Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important. In this study, we present a benchmarking approach based on metal chalcogenide NCs as a model system. We synthesized a series of bimetallic, iron-cobalt chalcogenide NCs [CoFeS(PEt)] ( = 0-6) (PEt = triethyl phosphine) and investigated the effect of heteroatoms in the octahedral metal chalcogenide core on their size and electronic properties. Using ion mobility-mass spectrometry (IM-MS), we observed a gradual increase in the collision cross section (CCS) with an increase in the number of Fe atoms in the core. DFT calculations combined with trajectory method CCS simulations successfully reproduced this trend, revealing that the increase in cluster size is primarily due to changes in metal-ligand bond lengths, while the electronic properties of the core remain largely unchanged. Moreover, this method allowed us to exclude certain multiplicity states of the NCs, as their CCS values were significantly different from those predicted for the lowest-energy structures. This study demonstrates that gas-phase IM-MS is a powerful technique for detecting subtle size differences in atomically precise NCs, which are often challenging to observe using conventional NC characterization methods. Accurate CCS measurements are established as a benchmark for comparison with theoretical calculations. The excellent correspondence between experimental data and theoretical predictions establishes a robust foundation for investigating structural changes of transition metal NCs of interest to a broad range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c07000DOI Listing

Publication Analysis

Top Keywords

metal chalcogenide
12
structural changes
8
atomically precise
8
chalcogenide ncs
8
electronic properties
8
ncs
7
properties
5
metal
4
changes metal
4
chalcogenide
4

Similar Publications

Construct ZnSeTe/ZnTe Nanostructures with the Tunable Emission from 450 to 760 nm.

J Phys Chem Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.

Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.

View Article and Find Full Text PDF

Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.

View Article and Find Full Text PDF

Monomer Design Enables Mechanistic Mapping of Anionic Ring-Opening Polymerization of Aromatic Thionolactones.

Angew Chem Int Ed Engl

January 2025

University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, and Polymer Science and Engineering, 96 Jinzhai Road, 230026, Hefei, CHINA.

Degradable chalcogenide polyesters, e.g., polythioesters (PTEs), typically exhibit improved thermal, mechanical, and optical properties.

View Article and Find Full Text PDF

Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements.

Acc Chem Res

January 2025

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.

View Article and Find Full Text PDF

Spiking neurons are essential for building energy-efficient biomimetic spatiotemporal systems because they communicate with other neurons using sparse and binary signals. However, the achievable high density of artificial neurons having a capacitor for emulating the integrate function of biological neurons has a limit. Furthermore, a low-voltage operation (<1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!