Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light. BEPE exerted microbicidal effects against (99.5%) and (99.6%) through synergistic photothermal effects and the microbiocidal activity of slowly released ε-polylysine. Moreover, the gently released EGCG from BEPE with relatively high bioavailability, synergistically inhibited and destroyed biofilms by inhibiting quorum sensing between microbes, resulting in an antibiofilm efficiency of 80.5% against . An subcutaneous fungal infection study revealed that BEPE accelerates tissue regeneration via targeted formation, elimination of fungal infection and alleviation of inflammation in situ, thereby promoting wound healing. This biodegradable hydrogel strategy will facilitate the design of multifunctional microbicidal agents for targeted subcutaneous fungal infection treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c18001 | DOI Listing |
Chem Biol Drug Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, Başakşehir Olympic Boulevard Road, 34480, Başakşehir, Istanbul, Turkey.
Purpose: The study aims to evaluate the clinical characteristics, risk factors, microbiological findings, and visual outcomes, as well as patient and eye survival, of patients diagnosed with endogenous endophthalmitis (EE).
Methods: A retrospective study was conducted on 29 eyes from 21 patients diagnosed with EE.
Results: The mean age of presentation was 56.
Mycopathologia
January 2025
Department of Dermatology, Wuhan No.1 Hospital, Wuhan, Hubei, China.
Adult tinea capitis, especially kerion, caused by Trichophyton tonsurans is relatively rare in China. Here, we report a case caused by the agent in an old woman with normal immune function. Fungal microscopic examination and culture were positive.
View Article and Find Full Text PDFVet Res Commun
January 2025
Facultad de Ciencias Veterinarias. Cátedra de Enfermedades Infecciosas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
Protothecosis is a severe, emerging opportunistic infection caused by the saprophytic, achlorophyllous microalgae of the genus Prototheca. Though uncommon, human and animal cases are increasing worldwide, making awareness of this fungal-like pathogen important in both human and veterinary medicine. We report a fatal case of disseminated protothecosis caused by P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!