Cell fate decisions, such as proliferation, differentiation, and death, are driven by complex molecular interactions and signaling cascades. While significant progress has been made in understanding the molecular determinants of these processes, historically, cell fate transitions were identified through light microscopy that focused on changes in cell morphology and function. Modern techniques have shifted towards probing molecular effectors to quantify these transitions, offering more precise quantification and mechanistic understanding. However, challenges remain in cases where the molecular signals are ambiguous, complicating the assignment of cell fate. During viral infection, programmed cell death (PCD) pathways, including apoptosis, necroptosis, and pyroptosis, exhibit complex signaling and molecular crosstalk. This can lead to simultaneous activation of multiple PCD pathways, which confounds assignment of cell fate based on molecular information alone. To address this challenge, we employed deep learning-based image classification of dying cells to analyze PCD in single Herpes Simplex Virus-1 (HSV-1)-infected cells. Our approach reveals that despite heterogeneous activation of signaling, individual cells adopt predominantly prototypical death morphologies. Nevertheless, PCD is executed heterogeneously within a uniform population of virus-infected cells and varies over time. These findings demonstrate that image-based phenotyping can provide valuable insights into cell fate decisions, complementing molecular assays. [Media: see text] [Media: see text] [Media: see text] [Media: see text].

Download full-text PDF

Source
http://dx.doi.org/10.1091/mbc.E24-10-0438DOI Listing

Publication Analysis

Top Keywords

cell fate
20
[media text]
16
text] [media
12
deep learning-based
8
learning-based image
8
image classification
8
cell
8
cell death
8
viral infection
8
fate decisions
8

Similar Publications

Early precursor-derived pituitary gland tissue-resident macrophages play a pivotal role in modulating hormonal balance.

Cell Rep

January 2025

Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland. Electronic address:

The pituitary gland is the central endocrine regulatory organ producing and releasing hormones that coordinate major body functions. The physical location of the pituitary gland at the base of the brain, though outside the protective blood-brain barrier, leads to an unexplored special immune environment. Using single-cell transcriptomics, fate mapping, and imaging, we characterize pituitary-resident macrophages (pitMØs), revealing their heterogeneity and spatial specialization.

View Article and Find Full Text PDF

Cell fate decisions, such as proliferation, differentiation, and death, are driven by complex molecular interactions and signaling cascades. While significant progress has been made in understanding the molecular determinants of these processes, historically, cell fate transitions were identified through light microscopy that focused on changes in cell morphology and function. Modern techniques have shifted towards probing molecular effectors to quantify these transitions, offering more precise quantification and mechanistic understanding.

View Article and Find Full Text PDF

Evolution of long scalp hair in humans.

Br J Dermatol

January 2025

Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.

The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago.

View Article and Find Full Text PDF

A cell fate change such as tumorigenesis incurs critical transition. It remains a longstanding challenge whether the underlying mechanism can be unraveled and a molecular switch that can reverse such transition is found. Here a systems framework, REVERT, is presented with which can reconstruct the core molecular regulatory network model and a reversion switch based on single-cell transcriptome data over the transition process is identified.

View Article and Find Full Text PDF

Introduction: Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!