Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na. On this basis, partially substituting Mn in NVMP with Fe, a new sodium superionic conductor (NASICON) structured cathode material has been designed to alleviate Jahn-Teller distortion and prolong the cycling life. The synergistic effect of N-doped double nanocarbon encapsulation and multielectron reactions is employed to promote the optimized NaVMnFe(PO)/NC@CNTs (NVMnFeP/NC@CNTs) electrode material to deliver fast Na diffusion kinetics, high reversible capacity (110.2 mAh g at 0.1 C), and long-term cyclic stability (80.1% of the capacity at 10 C over 2000 cycles). Besides, the electrochemical properties of NVMnFeP/NC@CNTs composites were investigated in detail at high loads and high window voltages to evaluate their potential for practical applications. The reduction/oxidation processes involved in Fe/Fe, Mn/Mn, and V/V redox couples and a solid-solution and biphasic reaction mechanism upon repeated de- and re-intercalation processes are revealed via ex-situ XRD and XPS characterization. Finally, the assembled NVMnFeP/NC@CNTs ∥ hard carbon full cell manifests high capacity (101.1 mAh g at 0.1 C) and good cycling stability (98.2% capacity retention at 1 C after 100 cycles). The rational design with multimetal ion substitution regulation has the potential to open up new possibilities for high-performance sodium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c15767 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFNature
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, China.
With promises for high specific energy, high safety and low cost, the all-solid-state lithium-sulfur battery (ASSLSB) is ideal for next-generation energy storage. However, the poor rate performance and short cycle life caused by the sluggish solid-solid sulfur redox reaction (SSSRR) at the three-phase boundaries remain to be solved. Here we demonstrate a fast SSSRR enabled by lithium thioborophosphate iodide (LBPSI) glass-phase solid electrolytes (GSEs).
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
Mn-containing sodium superionic conductor (NASICON) compounds have shown considerable potential as cathode for sodium-ion batteries (SIBs) owing to higher working voltage (V/V: 3.9 V), lower cost, and lower toxicity compared to full vanadium-based NASICON NaV(PO). Taking NaVMn(PO) (NVMP) as an example, its practical application is still restricted by poor electronic conductivity, sluggish intrinsic Na diffusion, and poor high-voltage stability.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, State Key Lab of Silicon and Advanced, Semiconductor Materials, Zhejiang University, Hangzhou 310027, PR China. Electronic address:
NaMnTi(PO) is a promising sodium-ion cathode material due to its relatively high specific capacity, excellent thermodynamic stability and low cost. However, unfavorable electron conductivity and slow kinetics limit its practical application. Here, a strategy of hetero and multivalent anion substitution is proposed to achieve high-rate performance and good capacity retention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!