Plants respond to attacks by insects by releasing herbivore-induced plant volatiles (HIPVs), which are known to influence the behavior of natural enemies, conspecific and heterospecific insects. However, little is known about how HIPVs induced by one insect species influence the behavior of an allospecific insect species, particularly if these insects belong to different feeding guilds. Here, using the interaction of two co-occurring insects with different feeding guilds - Bemisia tabaci (a sap sucking insect) and Tuta absoluta (a leaf mining insect) - on potato plants, we report that T. absoluta significantly preferred potato plants infested by B. tabaci. This preference is attributed to the B. tabaci-induced potato plant volatiles. Gas chromatography coupled with mass spectroscopy (GC-MS) analysis further revealed notable alterations in volatile composition between B. tabaci-infested and uninfested plants. Additionally, gas chromatography coupled with electroantennogram detector (GC-EAD) analysis identified four compounds - undecane, β-caryophyllene, β-farnesene and germacrene D - in B. tabaci-induced potato plant volatiles that elicited responses from T. absoluta antennae. Our findings emphasize how B. tabaci infestation alters potato plant volatile composition, making them attractive to T. absoluta. Understanding the chemical ecology interactions between allospecific insects with different feeding guilds is crucial for understanding how different insect groups affect the host location of one another through HIPVs. This knowledge can contribute to the development of more effective pest management strategies against these economically important pests.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-025-01570-wDOI Listing

Publication Analysis

Top Keywords

plant volatiles
16
feeding guilds
12
potato plant
12
tuta absoluta
8
influence behavior
8
insect species
8
insects feeding
8
potato plants
8
tabaci-induced potato
8
gas chromatography
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!