X-ray crystallography has tremendously served structural biology by routinely providing high-resolution 3D structures of macromolecules. The extent of information encoded in the X-ray crystallography is proportional to which resolution the crystals diffract and the structure can be refined to. Therefore, there is a continuous effort to obtain high-quality crystals, especially for those proteins, which are considered difficult to crystallize into high-quality protein crystals of suitable sizes for X-ray crystallography. Efforts in enhancing the resolution in X-ray crystallography have also been made by optimizing crystallization protocols using external stimuli such as an electric field and magnetic field during the crystallization. Here, we present the feasibility of on-the-fly post-crystallization resolution enhancement of the protein crystal diffraction by applying a high-voltage electric field. The electric field between 2 and 11 kV/cm, which was applied after mounting the crystals in the beamline, resulted in the enhancement of the resolution. The crystal diffraction quality improved progressively with the exposure time. Moreover, we also find that upto defined electric field threshold, the protein structure remains largely unperturbed, a conclusion further supported by molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00249-025-01731-5 | DOI Listing |
Eur Biophys J
January 2025
Faculty of Sciences, P. J. Šafárik University, Košice, Slovakia.
X-ray crystallography has tremendously served structural biology by routinely providing high-resolution 3D structures of macromolecules. The extent of information encoded in the X-ray crystallography is proportional to which resolution the crystals diffract and the structure can be refined to. Therefore, there is a continuous effort to obtain high-quality crystals, especially for those proteins, which are considered difficult to crystallize into high-quality protein crystals of suitable sizes for X-ray crystallography.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Shenyang Bluewisdom Technology Co., Ltd., Shenyang, Liaoning Province 110623, China.
Existing lower limb exoskeletons (LLEs) have demonstrated a lack of sufficient patient involvement during rehabilitation training. To address this issue and better incorporate the patient's motion intentions, this paper proposes an online brain-computer interface (BCI) system for LLE based motor imagery and stacked ensemble. The establishment of this online BCI system enables a comprehensive closed-loop control process, which includes the collection and decoding of brain signals, robotic control, and real-time feedback mechanisms.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
Nanosecond pulse power has many driving advantages in the dielectric barrier discharge (DBD) application field, including better discharge effect, higher discharge efficiency, and lower electrode temperature. A high-voltage pulse voltage power supply (HV-PVPS) with a multi-turn ratio linear pulse transformer (PT) based on Marx circuit and PT topologies are suitable for most DBD plasma applications with fewer expansion modules, lower cost, smaller volume, and higher reliability comparing with the all-solid-state Marx nanosecond pulse power supply. However, during the process of DBD driven by an HV-PVPS based on Marx and PT topologies, the PT is prone to magnetic core saturation, which limits the application for DBD.
View Article and Find Full Text PDFNano Lett
January 2025
IBM Research─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
The inhomogeneous magnetic stray field of micromagnets has been extensively used to manipulate electron spin qubits. By means of micromagnetic simulations and scanning superconducting quantum interference device microscopy, we show that the polycrystallinity of the magnet and nonuniform magnetization significantly impact the stray field and corresponding qubit properties. The random orientation of the crystal axis in polycrystalline Co magnets alters the qubit frequencies by up to 0.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!