Neuropilin 1 (NRP1) is upregulated in various types of malignant tumors, especially non-small-cell lung cancer (NSCLC). However, the precise mechanisms for membrane localization and regulation are not fully understood. Observations from super-resolution microscopy have revealed that NRP1 tends to form nanoscale clusters on the cell membrane, with these clusters varying significantly in size and density across different regions. Further research has shown that stimulation by hepatocyte growth factor (HGF) can reorganize the distribution of NRP1, reducing the number of small clusters while promoting the formation of larger ones. This suggests a propensity for internalization after activation. Additionally, dual-color dSTORM imaging has demonstrated a certain degree of colocalization between NRP1 and c-MET, indicating that c-MET plays an important role in stabilizing NRP1 clusters. This study provides new insights into the mechanism behind NRP1's clustered distribution on cell membranes and paves the way for developing more effective therapeutic strategies targeting NRP1 within tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c05675DOI Listing

Publication Analysis

Top Keywords

non-small-cell lung
8
lung cancer
8
nrp1
7
super-resolution fluorescence
4
fluorescence imaging
4
imaging reveals
4
reveals mechanism
4
mechanism nrp1
4
nrp1 clustering
4
clustering non-small-cell
4

Similar Publications

Background: The impact of incorporating immune checkpoint inhibitors (ICIs) into standard chemotherapy on the severity and risk of myelosuppression in advanced non-small cell lung cancer (NSCLC) patients remains uncertain.

Methods: We conducted a systematic review and meta-analysis of phase 3 randomized controlled trials (RCTs) that evaluated ICIs in people with NSCLC. A comprehensive search of four databases, PubMed, Web of Science, Embase, and the Cochrane Library, was carried out from inception to 30 October 2023.

View Article and Find Full Text PDF

Neuropilin 1 (NRP1) is upregulated in various types of malignant tumors, especially non-small-cell lung cancer (NSCLC). However, the precise mechanisms for membrane localization and regulation are not fully understood. Observations from super-resolution microscopy have revealed that NRP1 tends to form nanoscale clusters on the cell membrane, with these clusters varying significantly in size and density across different regions.

View Article and Find Full Text PDF

miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway.

Thorac Cancer

January 2025

Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).

Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Background: Chemotherapy-induced peripheral neuropathy (CIPN) and its associated pain negatively affect patient outcomes and quality of life (QoL). The two-part MiroCIP study included interventional and prospective observational studies. Here, we report the latter, describing CIPN incidence, risk factors, and outcomes.

View Article and Find Full Text PDF

Impact of EML4-ALK Variants and TP53 Status on the Efficacy of ALK Inhibitors in Patients With Non-small Cell Lung Cancer.

Thorac Cancer

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: The clinical implications of different EML4-ALK fusion variants remain poorly elucidated in the era of second-generation ALK inhibitors.

Methods: This was a retrospective cohort study, wherein patients diagnosed with locally advanced or metastatic non-small cell lung cancer harboring EML4-ALK fusion were stratified into two cohorts based on their first-line treatment: Cohort 1 received alectinib, while Cohort 2 received crizotinib. Statistical analysis was employed to investigate the impact of different EML4-ALK variants and TP53 status on the efficacy of first-line ALK-TKIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!