Biochemistry textbooks describe eukaryotic mRNAs as monocistronic. However, increasing evidence reveals the widespread presence and translation of upstream open reading frames preceding the "main" ORF. DNA and RNA viruses infecting eukaryotes often produce polycistronic mRNAs and viruses have evolved multiple ways of manipulating the host's translation machinery. Here, we introduce an experimental model to study gene expression regulation from virus-like bicistronic mRNAs in human cells. The model consists of a short upstream ORF and a reporter downstream ORF encoding a fluorescent protein. We have engineered synonymous variants of the upstream ORF to explore large parameter space, including codon usage preferences, mRNA folding features, and splicing propensity. We show that human translation machinery can translate the downstream ORF from bicistronic mRNAs, albeit reporter protein levels are thousand times lower than those from the upstream ORF. Furthermore, synonymous recoding of the upstream ORF exclusively during elongation significantly influences its own translation efficiency, reveals cryptic splice signals, and modulates the probability of downstream ORF translation. Our results are consistent with a leaky scanning mechanism facilitating downstream ORF translation from bicistronic mRNAs in human cells, offering new insights into the role of upstream ORFs in translation regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pro.70036DOI Listing

Publication Analysis

Top Keywords

downstream orf
20
upstream orf
20
bicistronic mrnas
16
mrnas human
12
human cells
12
orf
11
translation
8
orf bicistronic
8
codon usage
8
translation machinery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!