Tryptophan mannosylation, the covalent addition of an α-ᴅ-mannose sugar to a tryptophan side chain, is a post-translational modification (PTM) that can affect protein stability, folding, and interactions. Compared to other forms of protein glycosylation, it is relatively uncommon but is affected by conformational anomalies and modeling errors similar to those seen in N- and O-glycans in the Protein Data Bank (PDB). In this work, we report methods for detecting, building, and improving mannose structures linked to tryptophans. These methods have been used to mine X-ray crystallographic and cryo-electron microscopy maps in the PDB looking for unmodeled mannosylation, resulting in a number of cases where the modification can be placed in the map with high confidence. Additionally, we address most conformational issues affecting this modification. Finally, the development of a structural template to recognize thrombospondin repeats (TSR) domains where tryptophan mannosylation occurs will allow for the mannosylation of candidate-predicted models, for example, those predicted with AlphaFold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pro.70025 | DOI Listing |
Protein Sci
February 2025
York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
Tryptophan mannosylation, the covalent addition of an α-ᴅ-mannose sugar to a tryptophan side chain, is a post-translational modification (PTM) that can affect protein stability, folding, and interactions. Compared to other forms of protein glycosylation, it is relatively uncommon but is affected by conformational anomalies and modeling errors similar to those seen in N- and O-glycans in the Protein Data Bank (PDB). In this work, we report methods for detecting, building, and improving mannose structures linked to tryptophans.
View Article and Find Full Text PDFGlycobiology
September 2024
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
C-mannosylation is a unique type of glycosylation in which a mannose is added to tryptophan in a protein. However, the biological function of C-mannosylation is still largely unknown. AXL is a receptor tyrosine kinase, and its overexpression contributes to tumor malignancy.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
C-Mannosyl tryptophan (CMW), a unique glycosylated amino acid, is considered to be produced by degradation of C-mannosylated proteins in living organism. Although protein C-mannosylation is involved in the folding and secretion of substrate proteins, the pathophysiological function in the hematological system is still unclear. This study aimed to assess CMW in the human hematological disorders.
View Article and Find Full Text PDFFEBS J
August 2024
Institute of Clinical Biochemistry, Hannover Medical School, Germany.
Mucins are major components of the mucus. Besides the highly O-glycosylated tandem repeat domains, mucins contain Cys domains (CysDs). CysDs contain conserved disulfide-forming cysteine residues as well as a WxxW motif.
View Article and Find Full Text PDFFEBS J
November 2023
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan.
Premelanosome protein (PMEL), a melanocyte-specific glycoprotein, has an essential role in melanosome maturation, assembling amyloid fibrils for melanin deposition. PMEL undergoes several post-translational modifications, including N- and O-glycosylations, which are associated with proper melanosome development. C-mannosylation is a rare type of protein glycosylation at a tryptophan residue that might regulate the secretion and localization of proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!