When the kidneys are injured, uremic toxins (UTXs) accumulate in the body, affecting other tissues and causing a loss of essential body functions. This study investigated the adsorption of blood plasma-laden UTXs on the surface of PCL fibers to assess their potential as an alternative to membrane dialysis materials. Using plasma containing 26 UTXs at a concentration similar to that found in end-stage kidney disease patients, we analyzed the adsorbed proteins and examined clot formation in normal and toxin-treated plasma in the presence of PCL fibers. Our findings revealed that the presence of UTXs significantly increased the adsorption of proteins on PCL fiber meshes, without leading to increased clot formation. This suggests a lack of enzymatic activation despite the higher protein adsorption. Additionally, our study indicates that unmodified PCL surfaces have the potential to trigger a strong humoral immune response, underscoring the importance of understanding these interactions for the development of personalized treatment approaches for patients with kidney failure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.23656DOI Listing

Publication Analysis

Top Keywords

pcl fibers
8
clot formation
8
evaluating electrospun
4
electrospun polycaprolactone
4
polycaprolactone fibers
4
fibers for blood-contacting
4
for blood-contacting applications
4
applications kidneys
4
kidneys injured
4
injured uremic
4

Similar Publications

When the kidneys are injured, uremic toxins (UTXs) accumulate in the body, affecting other tissues and causing a loss of essential body functions. This study investigated the adsorption of blood plasma-laden UTXs on the surface of PCL fibers to assess their potential as an alternative to membrane dialysis materials. Using plasma containing 26 UTXs at a concentration similar to that found in end-stage kidney disease patients, we analyzed the adsorbed proteins and examined clot formation in normal and toxin-treated plasma in the presence of PCL fibers.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.

View Article and Find Full Text PDF

Liposomes are employed for the delivery of molecular cargo in several classes of systems. For instance, the embedding of loaded liposomes in polymeric fibrous scaffolds has enabled the creation of hybrid materials that mimic biological membranes. Liposomes with unmodified surfaces have been predominantly integrated into fibers, which leads to instabilities due to interfacial incompatibility.

View Article and Find Full Text PDF

Polylactic acid (PLA) composite fibers were obtained using melt electrospinning, in which a high voltage was applied to the nozzle of the 3D printer. Filaments for melt electrospinning were prepared by using an extruder operated at 155 °C. PLA was mixed with polycaprolactone (PCL; 95:5, 90:10, and 85:15 by wt %), zinc oxide (ZnO; 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!