Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.

Hua Xi Kou Qiang Yi Xue Za Zhi

Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.

Published: February 2025

Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.

Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry. The culture medium was prepared with 1 mg/mL 45S5, and its pH and ion concentration were determined. The experiments were divided into control, 45S5, and 3-methyladenine (3-MA) 45S5 groups. In the 45S5 group, APCs were induced to culture with 1 mg/mL 45S5. In the 3-MA 45S5 group, the autophagy inhibitor 3-MA was added to 1 mg/mL 45S5. Protein immunoblotting assay (Western blot) was used to detect the expression of autophagy-associated proteins of microtubule-associated protein 1 light-chain 3β (LC3B) and P62 after 24 h of induction culture in each group. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of bone sialoprotein (BSP), Runt-related transcription factor 2 (Runx2), dentin sialophosphoprotein (DSPP), and dentin matrix protein-1 (DMP-1) after 7 d of induction culture. Cellular alkaline phosphatase (ALP) staining analyzed cellular ALP activity at 7 d of induction, and alizarin red staining evaluated the formation of mineralized nodules at 21 d of induction.

Results: The pH of the 45S5 extract culture medium was 8.65±0.01, which was not significantly different from that of the control group (>0.05). The silicon ion concentration of the 45S5 induction culture medium was (1.56±0.07) mmol/L, which was higher than that of the control group (0.08±0.01) mmol/L (<0.05). The calcium ion concentration of the 45S5 induction culture was (1.57±0.15) mmol/L, which was not significantly different from that of the control group (>0.05). Western blot results showed that LC3B-Ⅱ/Ⅰ ratio increased and P62 expression decreased in the 45S5 group compared with those in the control group (<0.05). By contrast, the ratio decreased and the expression increased in the 3-MA 45S5 group compared with those in the 45S5 group (<0.05). RT-qPCR results showed that the expression of BSP, Runx2, DMP-1, and DSPP enhanced in the 45S5 group compared with that in the control group (<0.05), but the expression decreased in the 3-MA 45S5 group compared with that in the 45S5 group (<0.05). Semi-quantitative analysis of ALP staining and alizarin red staining showed that the ALP activity was enhanced, and the formation mineralized nodule increased in the 45S5 group compared with those in the control group. The ALP activity weakened, and the formation mineralized nodules were reduced in the 3-MA 45S5 group compared with that those in the 45S5 group.

Conclusions: Cell autophagy participates in the odontogenic differentiation of APCs induced by 1 mg/mL 45S5 .

Download full-text PDF

Source
http://dx.doi.org/10.7518/hxkq.2025.2024177DOI Listing

Publication Analysis

Top Keywords

bioactive glass
12
45s5
12
odontogenic differentiation
12
culture medium
12
mg/ml 45s5
12
45s5 group
12
induction culture
12
control group
12
glass 45s5
8
differentiation apical
8

Similar Publications

Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.

Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.

Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.

View Article and Find Full Text PDF

Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).

View Article and Find Full Text PDF

Insights into Calcium Phosphate Formation Induced by the Dissolution of 45S5 Bioactive Glass.

ACS Biomater Sci Eng

January 2025

CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.

Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.

View Article and Find Full Text PDF

Metal-organic framework (MOF)-bioactive glass (BG) systems for biomedical applications - A review.

Mater Today Bio

February 2025

Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany.

In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities.

View Article and Find Full Text PDF

Objectives: This study aimed to determine whether incorporating nanostructured additives into bleaching agents enhances efficacy and reduces side effects while identifying gaps for further investigation.

Methods: A comprehensive search was conducted in electronic databases, including PubMed/Medline, Embase, Scopus, and ISI Web of Science. Two reviewers independently screened articles based on predefined criteria, resolving discrepancies through discussion or consultation with a third reviewer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!