Bacterial infections, particularly those caused by drug-resistant bacteria, represent a pressing global health challenge. During the interaction between pathogen infection and host defense, bacterial infections initiate the host's immune response, which involves the activation of proteases that play a critical role in antibacterial defense. Granzyme B (GzmB), a key immune-related biomarker associated with cytotoxic T lymphocytes (CTLs), plays a pivotal role in this process. Therefore, detecting the activity of GzmB is crucial for understanding the host immune response to bacterial infections and for developing therapeutic strategies to overcome bacterial virulence. In this study, we designed and synthesized three granzyme B-activated near-infrared molecular probes. Among them, the probe HCy-F demonstrates in situ imaging capability, enabling precise quantification of GzmB activity. This development offers a valuable tool for monitoring immune responses and optimizing immunotherapy approaches for combating drug-resistant pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202400990DOI Listing

Publication Analysis

Top Keywords

bacterial infections
16
immune response
12
host immune
8
response bacterial
8
bacterial
5
self-immobilizing fluorogenic
4
fluorogenic probe
4
probe situ
4
situ labeling
4
labeling granzyme
4

Similar Publications

Bacterial infections, particularly those caused by drug-resistant bacteria, represent a pressing global health challenge. During the interaction between pathogen infection and host defense, bacterial infections initiate the host's immune response, which involves the activation of proteases that play a critical role in antibacterial defense. Granzyme B (GzmB), a key immune-related biomarker associated with cytotoxic T lymphocytes (CTLs), plays a pivotal role in this process.

View Article and Find Full Text PDF

Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.

View Article and Find Full Text PDF

Utilizing Targeted Next-Generation Sequencing for Rapid, Accurate, and Cost-Effective Pathogen Detection in Lower Respiratory Tract Infections.

Infect Drug Resist

January 2025

Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

Objective: To evaluate the diagnostic performance and clinical impact of targeted next-generation sequencing (tNGS) in patients with suspected lower respiratory tract infections.

Methods: Following propensity score matching, we compared the diagnostic performances of tNGS and metagenomic next-generation sequencing (mNGS). Furthermore, the diagnostic performance of tNGS was compared with that of culture, and its clinical impact was assessed.

View Article and Find Full Text PDF

Background: Human brucellosis is the most common bacterial zoonosis worldwide, with brucella spondylitis (BS) being one of its most severe forms, potentially leading to spinal deformity or paralysis. This study aims to provide a comprehensive overview of the current status and research trends in the BS field using bibliometric methods.

Methods: Publications on BS from January 1, 1980, to March 24, 2024, were retrieved from the Web of Science database.

View Article and Find Full Text PDF

From a One Health perspective, dogs and cats have begun to be recognized as important reservoirs for clinically significant multidrug-resistant bacterial pathogens. In this study, we investigated the occurrence and genomic features of ESβL producing Enterobacterales isolated from dogs, in the province of Imbabura, Ecuador. We identified four isolates expressing ESβLs from healthy and diseased animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!