The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway. Further studies revealed that the CCN3 is a key bridge protein for transmitting the osteoinductive effects of nano PCS into the intracellular compartment and activating Wnt10b. Specifically, the molecular mechanism studies confirmed that the inorganic silicon hydroxyl and the organic ester group can bound to the Thrombospondin-1 (TSP-1) and von Willebrand factor type C repeat module (vWC) structural domains of CCN3 respectively. The special material-protein interaction induced a conformational change of CCN3 and activated the function of the TSP-1 structural domain, which is further associated with the binding and activation of Wnt10b signaling. This study reveals the first targets of nanobiomaterials to promote tissue regeneration through cellular interactions and provides new ideas for the development of materiobiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202404075 | DOI Listing |
Adv Healthc Mater
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China.
The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Eye School of Chengdu University of Traditional Chinese Medicine, Ineye Hospital of Chengdu University of Traditional Chinese Medicine, KeyLaboratory of Sichuan Province Ophthalmopathy Prevention & Cureand Visual Function Protection with Traditional Chinese Medicine Laboratory, China. Electronic address:
Ethnopharmacological Relevance: Dahuang-Gancao decoction (DGD) is a traditional Chinese medicinal formula that is recorded in the Synopsis of the Golden Chamber, and is widely used to treat damp-heat in the body. Since the pathological factors of androgenetic alopecia (AGA) also reflect damp-heat blockage, DGD has great potential for the treatment of AGA and has been used effectively in clinical practice.
Aim Of The Study: The aim of the study was to investigate whether external application of DGD could promote the activation and proliferation of hair follicle stem cells (HFSCs) and improve AGA through the Wnt/β-catenin pathway.
Regen Biomater
July 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
Exp Dermatol
August 2024
Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.
J Cell Mol Med
August 2024
Department of Anorectal Surgery, Shanghai Baoshan Hospital of Intergrated Traditonal Chinese and Western Medicine, Shanghai, China.
The association between anal fistula patients and colorectal cancer, as well as the potential pathophysiological mechanisms, remains unclear. To explore the relationship between anal fistula and colorectal cancer and its potential mechanisms. Analysis of GEO and TCGA databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!