Unlocking Advanced Architectures of Single-Crystal Metal-Organic Frameworks.

Angew Chem Int Ed Engl

Fudan University - Handan Campus: Fudan University, Department of Chemistry, 2205 Songhu Road, Laboratory of Advanced Materials, 200438, Shanghai, CHINA.

Published: January 2025

The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs. This approach yields ZIF-8&mSiO2 nanohybrids with diverse topologies, alongside derived single-crystal MOF nanoparticles exhibiting intricate morphologies such as hexapods, nested nanocages, and octopods. Our method involves the selective growth of six mSiO2 nanoplates on the {100} facets of ZIF-8 nanocubes, forming the cubic-shaped ZIF-8&mSiO2 nanohybrids, with the concurrent etching of the {110} facets of initial ZIF-8 nanocubes. By fine-tuning this balance between the growth and etching, we achieved precise morphological control, transforming cubic nanohybrids into intricate hexapods nanohybrids. Additionally, secondary epitaxial growth of homo- or hetero-MOFs on these hybrids led to ZIF-8&mSiO2&MOF composites with six mSiO2 inlays. Finally, selective alkaline etching of the mSiO2 compartments result in single-crystal MOF nanoparticles with unprecedented and sophisticated morphologies, such as hexapods, nested nanocages, octopods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202423939DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
single-crystal mofs
8
zif-8&msio2 nanohybrids
8
single-crystal mof
8
mof nanoparticles
8
morphologies hexapods
8
hexapods nested
8
nested nanocages
8
nanocages octopods
8
zif-8 nanocubes
8

Similar Publications

Unlocking Advanced Architectures of Single-Crystal Metal-Organic Frameworks.

Angew Chem Int Ed Engl

January 2025

Fudan University - Handan Campus: Fudan University, Department of Chemistry, 2205 Songhu Road, Laboratory of Advanced Materials, 200438, Shanghai, CHINA.

The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs.

View Article and Find Full Text PDF

Metal-free covalent organic frameworks (COFs) have emerged as promising catalysts for the oxygen reduction reaction (ORR) because of their unique structural properties and notable stability. To enhance both catalytic activity and selectivity, a variety of linkers and linkages have been investigated in efforts to precisely engineer COFs. However, the impact of vertex structures within COFs on ORR catalysis remains largely underexplored.

View Article and Find Full Text PDF

2D monolayer electrocatalysts for CO electroreduction.

Nanoscale

January 2025

Institute of Energy Power Innovation, North China Electric Power University, 2 Benigno Road, Beijing 102206, P. R. China.

The electrocatalytic carbon dioxide reduction reaction (CORR) is an attractive method for converting atmospheric CO into value-added chemicals and fuels. In order to overcome the low efficiency and durability that hinder its practical application, a significant amount of research has been dedicated to designing novel catalysts at the nanoscale and even the atomic scale. Two-dimensional (2D) monolayer materials inherit the merits of both 2D materials and single-atom materials.

View Article and Find Full Text PDF

The rapid advancement of covalent organic frameworks (COFs) in recent years has firmly established them as a new class of molecularly precise and highly tuneable porous materials. However, compared to other porous materials, such as zeolites and metal-organic frameworks, the successful integration of hierarchical porosity into COFs remains largely unexplored. The challenge lies in identifying appropriate synthetic methods to introduce secondary pores without compromising the intrinsic structural porosity of COFs.

View Article and Find Full Text PDF

Electron ptychography, recognized as an ideal technique for low-dose imaging, consistently achieves deep sub-angstrom resolution at electron doses of several thousand electrons per square angstrom (e/Å) or higher. Despite its proven efficacy, the application of electron ptychography at even lower doses-necessary for materials highly sensitive to electron beams-raises questions regarding its feasibility and the attainable resolution under such stringent conditions. Herein, we demonstrate the implementation of near-atomic-resolution ( ~ 2 Å) electron ptychography reconstruction at electron doses as low as ~100 e/Å, for metal-organic frameworks (MOFs), which are known for their extreme sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!