Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves. Experimental results demonstrate that the proposed system achieves high-precision electromagnetic wave manipulation, in response to different gestures. This system has significant potential applications in intelligent device control, virtual reality systems, and wireless communication technology, and is expected to contribute to the advancement and innovation of HMI technology by integration of more advanced metasurfaces and sEMG processing technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744455 | PMC |
http://dx.doi.org/10.1515/nanoph-2024-0572 | DOI Listing |
Nanophotonics
January 2025
Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.
View Article and Find Full Text PDFAdv Mater
April 2020
Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA.
Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on-demand reversible shape reconfigurations, desirable for many emerging applications (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!