Introduction: Cryptorchidism can damage cells in the cryptorchid testes due to elevated local temperatures, potentially impacting the fertility of the child in adulthood. Research indicates that vitamin D enhances sperm quality in adult males. This study aimed to explore whether vitamin D inhibits NLRP3 activation, thus helping to mitigate heat stress damage to testicular spermatogenic and Sertoli cells.

Materials And Methods: Five cases of normal testicular tissue adjacent to a tumor (testis removed due to tumorous growth) and five cases of atrophied cryptorchid testicular tissue (testis removed) were analyzed for immunohistochemistry to determine NLRP3 expression in cryptorchid tissue. In Phase I, spermatogonia (GC-1) and Sertoli cells (TM4) were separated into blank and heat stress groups. Apoptosis, inflammatory factor levels, and the expression of Bcl-2 and NLRP3 genes and proteins were measured at 2, 6, and 10 h after heat stress treatment. In Phase II, the cells were re-cultured and divided into three groups: heat stress, siRNA + heat stress, and VD + heat stress. After 10 h, the apoptosis, inflammatory factor levels, and gene and protein expressions of Bcl-2 and NLRP3 were reassessed in each group.

Results: Immunohistochemistry indicated NLRP3 expression in cryptorchid tissue. Phase I, extending heat stress duration led to increased apoptosis in spermatogonia (GC-1) and testicular Sertoli cells (TM4), heightened levels of inflammatory factors, reduced BCL-2 expression, and elevated NLRP3 expression compared to the control group. Phase II, both the siRNA + heat stress and VD + heat stress groups showed decreased apoptosis in spermatogonia and Sertoli cells, lower inflammatory factor levels, increased BCL-2 expression, and decreased NLRP3 expression compared to the heat stress-only group, with statistically significant differences ( < 0.05).

Conclusions: This is the first time we found the expression of NLRP3 in cryptorchidism. Vitamin D can inhibit the expression of NLRP3 and reduce the damage of heat stress on testicular spermatogenic cells and Sertoli cells, and play a protective role for testicular spermatogenic cells and Sertoli cells. This provides a theoretical basis for preserving testicular function during the "treatment gap" in boys with cryptorchidism who have not received surgical treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747411PMC
http://dx.doi.org/10.3389/fped.2024.1495310DOI Listing

Publication Analysis

Top Keywords

heat stress
24
sertoli cells
16
nlrp3 expression
16
inflammatory factor
12
factor levels
12
stress
10
spermatogonia sertoli
8
stress damage
8
nlrp3
8
testicular tissue
8

Similar Publications

Introduction: Cryptorchidism can damage cells in the cryptorchid testes due to elevated local temperatures, potentially impacting the fertility of the child in adulthood. Research indicates that vitamin D enhances sperm quality in adult males. This study aimed to explore whether vitamin D inhibits NLRP3 activation, thus helping to mitigate heat stress damage to testicular spermatogenic and Sertoli cells.

View Article and Find Full Text PDF

Exertional heat stroke (EHS) is a life-threatening condition characterized by hyperthermia and multi-organ dysfunction, often associated with intestinal barrier disruption. This study evaluated the protective effects of Huoxiang Zhengqi Dropping Pills (HXZQD) against EHS in a rat model. HXZQD was administered via oral gavage at low, medium, and high doses, followed by EHS induction through exercise under high-temperature and high-humidity conditions.

View Article and Find Full Text PDF

Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions.

View Article and Find Full Text PDF

Characterizing Three Heat Shock Protein 70 Genes of and Their Expression in Response to Temperature and Insecticide Stress.

J Agric Food Chem

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses.

View Article and Find Full Text PDF

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!