Background: Although immunoglobulin (Ig) alleles play a pivotal role in the antibody response to pathogens, research to understand their role in the humoral immune response is still limited.
Methods: We retrieved the germline sequences for the IGHV from the IMGT database to illustrate the amino acid polymorphism present within germline sequences of IGHV genes. We aassembled the sequences of IgM and IgD repertoire from 130 people to investigate the genetic variations in the population. A dataset comprising 10,643 SARS-CoV-2 spike-specific antibodies, obtained from COV-AbDab, was compiled to assess the impact of SARS-CoV-2 infection on allelic gene utilization. Binding affinity and neutralizing activity were determined using bio-layer interferometry and pseudovirus neutralization assays. Primary docking was performed using ZDOCK (3.0.2) to generate the initial conformation of the antigen-antibody complex, followed by simulations of the complete conformations using Rosetta SnugDock software. The original and simulated structural conformations were visualized and presented using ChimeraX (v1.5).
Results: We present an allelic atlas of immunoglobulin heavy chain (IgH) variable regions, illustrating the diversity of allelic variants across 33 IGHV family germline sequences by sequencing the IgH repertoire of in the population. Our comprehensive analysis of SARS-CoV-2 spike-specific antibodies revealed the preferential use of specific Ig alleles among these antibodies. We observed an association between Ig alleles and antibody binding epitopes. Different allelic genotypes binding to the same RBD epitope on the spike show different neutralizing potency and breadth. We found that antibodies carrying the IGHV1-69*02 allele tended to bind to the RBD E2.2 epitope. The antibodies carrying G50 and L55 amino acid residues exhibit potential enhancements in binding affinity and neutralizing potency to SARS-CoV-2 variants containing the L452R mutation on RBD, whereas R50 and F55 amino acid residues tend to have reduced binding affinity and neutralizing potency. IGHV2-5*02 antibodies using the D56 allele bind to the RBD D2 epitope with greater binding and neutralizing potency due to the interaction between D56 on HCDR2 and K444 on RBD of most Omicron subvariants. In contrast, IGHV2-5*01 antibodies using the N56 allele show increased binding resistance to the K444T mutation on RBD.
Discussion: This study provides valuable insights into humoral immune responses from the perspective of Ig alleles and population genetics. These findings underscore the importance of Ig alleles in vaccine design and therapeutic antibody development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746035 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1471396 | DOI Listing |
Front Immunol
January 2025
State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
Background: Although immunoglobulin (Ig) alleles play a pivotal role in the antibody response to pathogens, research to understand their role in the humoral immune response is still limited.
Methods: We retrieved the germline sequences for the IGHV from the IMGT database to illustrate the amino acid polymorphism present within germline sequences of IGHV genes. We aassembled the sequences of IgM and IgD repertoire from 130 people to investigate the genetic variations in the population.
J Proteome Res
January 2025
Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-901, Brazil.
Antivenoms are the only effective treatment for snakebite envenomation and have saved countless lives over more than a century. Despite their value, antivenoms present risks of adverse reactions. Current formulations contain a fraction of nonspecific antibodies and serum proteins.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
For use in prevention and treatment, HIV-1 broadly neutralizing antibodies (bnAbs) have to overcome Env conformational heterogeneity of viral quasispecies and neutralize with constant high potency. Comparative analysis of neutralization data from the CATNAP database revealed a nuanced relationship between bnAb activity and Env conformational flexibility, with substantial epitope-specific variation of bnAb potency ranging from increased to decreased activity against open, neutralization-sensitive Env. To systematically investigate the impact of variability in Env conformation on bnAb potency we screened 126 JR-CSF point mutants for generalized neutralization sensitivity to weakly neutralizing antibodies (weak-nAbs) depending on trimer opening and plasma from people with chronic HIV-1 infection.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China. Electronic address:
The continuing emergence of SARS-CoV-2 variants has posed a great challenge to vaccination strategies. Therefore, the development of broad-spectrum protective antibodies and universal vaccines remains urgently needed. In this study, we isolated two broadly neutralizing mAbs, nCoV-R48 and nCoV-R70, from a vaccinated person.
View Article and Find Full Text PDFAntiviral Res
January 2025
School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety. Electronic address:
IgA antibodies are critical components of the mucosal immune barrier, providing essential first-line defense against viral infections. In this study, we investigated the impact of antibody class switching on neutralization efficacy by engineering recombinant antibodies of different isotypes (IgA1, IgG1) with identical variable regions from SARS-CoV-2 convalescent patients. A potent, broad-spectrum neutralizing monoclonal antibody CAV-C65 exhibited a ten-fold increase in neutralization potency upon switching from IgG1 to IgA1 monomer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!