Epithelial-mesenchymal transition (EMT) is a dynamic process of lineage plasticity in which epithelial cancer cells acquire mesenchymal traits, enabling them to metastasize to distant organs. This review explores the current understanding of how lineage plasticity and phenotypic reprogramming drive prostate cancer progression to lethal stages, contribute to therapeutic resistance, and highlight strategies to overcome the EMT phenotype within the prostate tumor microenvironment (TME). Emerging evidence reveals that prostate tumor cells can undergo lineage switching, adopting alternative growth pathways in response to anti-androgen therapies and taxane-based chemotherapy. These adaptive mechanisms support tumor survival and growth, underscoring the need for deeper insights into the processes driving prostate cancer differentiation, including neuroendocrine differentiation and lineage plasticity. A comprehensive understanding of these mechanisms will pave the way for innovative therapeutic strategies. Effectively targeting prostate cancer cells with heightened plasticity and therapeutic vulnerability holds promise for overcoming treatment resistance and preventing tumor recurrence. Such advancements are critical for developing effective approaches to prostate cancer treatment and improving patient survival outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744350PMC
http://dx.doi.org/10.62347/YFRP8901DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
prostate tumor
12
lineage plasticity
12
cancer cells
8
prostate
7
plasticity
5
tumor
5
cancer
5
impact cell
4
cell plasticity
4

Similar Publications

Objective: To assess the association between prostate-specific antigen (PSA) density (PSAD) and prostate cancer mortality after a benign result on systematic transrectal ultrasonography (TRUS)-guided prostate biopsy.

Patients And Methods: This retrospective study used data from the Finnish Randomised Study of Screening for Prostate Cancer (FinRSPC) collected between 1996 and 2020. We identified men aged 55-71 years randomised to the screening arm with PSA ≥4.

View Article and Find Full Text PDF

Patient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts.

View Article and Find Full Text PDF

Background The accurate diagnosis of intraductal carcinoma of the prostate (IDC-P) is occasionally challenging due to the similarity in pathological morphology between IDC-P and high-grade prostatic intraepithelial neoplasia (HGPIN). In this report, we reviewed the pathology of cases previously diagnosed as HGPIN to search for IDC-P cases effectively. In addition, we examined whether those cases had genetic abnormalities.

View Article and Find Full Text PDF

Obesity, dietary interventions and microbiome alterations in the development and progression of prostate cancer.

Front Immunol

January 2025

Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin and Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, United States.

Purpose Of Review: The role of the microbiome in prostate cancer is an emerging subject of research interest. Certain lifestyle factors, such as obesity and diet, can also impact the microbiome, which has been implicated in many diseases, such as heart disease and diabetes. However, this link has yet to be explored in detail in the context of prostate cancer.

View Article and Find Full Text PDF

Purpose: To develop novel nomograms for predicting prostate cancer (PCa) and clinically significant prostate cancer (csPCa) in patients with prostate-specific antigen (PSA) < 10 ng/ml and PI-RADS v2.1 score ≤ 3.

Methods: We retrospectively collected data from 327 men with PSA < 10 ng/ml and PI-RADS score ≤ 3 from June 2020 to June 2024 in our hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!