Background: Nanotechnology has emerged as a promising field for the diagnosis, monitoring, and treatment of respiratory tract infections (RTIs). By leveraging the unique properties of nanoscale delivery systems, nanotechnology can significantly enhance the selectivity and efficacy of antimicrobials, thereby reducing off-target effects.

Objective: This review explores the development and application of targeted nanosystems in combating viral, bacterial, and fungal RTIs. Nanotechnology-based systems, including biological and non-biological nanoparticles, offer innovative solutions for overcoming antimicrobial resistance, improving drug bioavailability, and minimizing systemic side effects. RTIs are a leading cause of morbidity and mortality globally, particularly affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. Traditional drug delivery methods face numerous challenges, such as rapid clearance, poor tissue penetration, and drug degradation. Nanoparticle-based delivery systems address these issues by enhancing tissue penetration, providing sustained drug release, and enabling targeted delivery to infection sites. These systems include liposomal delivery, polymeric nanoparticles, dendrimers, and metal-based nanoparticles, each offering unique advantages in treating RTIs. Nanotechnology also plays a crucial role in vaccine development by offering new strategies to enhance immune responses and improve antigen delivery. Furthermore, the review discusses the clinical translation and regulatory considerations for nanotechnology-based drug delivery, emphasizing the need for rigorous testing and quality control to ensure safety and efficacy.

Conclusion: Nanotechnology offers promising advancements in the treatment, and prevention of RTIs by enhancing drug delivery and efficacy. By addressing challenges such as antimicrobial resistance and poor tissue penetration, nanotechnology-based systems have the potential to significantly improve patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744063PMC
http://dx.doi.org/10.14440/jbm.2024.0065DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
tissue penetration
12
delivery
9
treatment respiratory
8
respiratory tract
8
tract infections
8
delivery systems
8
nanotechnology-based systems
8
antimicrobial resistance
8
poor tissue
8

Similar Publications

Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).

View Article and Find Full Text PDF

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

Thyroid-Targeted Nano-Bombs Empower HIFU for Graves' Disease.

Adv Sci (Weinh)

January 2025

The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.

Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.

View Article and Find Full Text PDF

Ischemic Area-Targeting and Self-Monitoring Nanoprobes Ameliorate Myocardial Ischemia/Reperfusion Injury by Scavenging ROS and Counteracting Cardiac Inflammation.

Adv Sci (Weinh)

January 2025

Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.

Precise and effective management of myocardial ischemia/reperfusion injury (MIRI) is still a formidable challenge in clinical practice. Additionally, real-time monitoring of drug aggregation in the MIRI region remains an open question. Herein, a drug delivery system, hesperadin and ICG assembled in PLGA-Se-Se-PEG-IMTP (HI@PSeP-IMTP), is designed to deliver hesperadin and ICG to the MIRI region for in vivo optical imaging tracking and to ameliorate MIRI.

View Article and Find Full Text PDF

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!