Aims: The comorbidity of anxiety-like symptoms in neuropathic pain (NP) is a significant yet often overlooked health concern. Anxiety sufferers may have a lower tolerance for pain, but which is difficult to treat. Accumulating evidence suggests a strong link between astrocytes and the manifestation of NP with concurrent anxiety-like behaviors. And the anterior cingulate cortex (ACC) has emerged as a key player in pain modulation and related emotional processing. However, the complex mechanisms that astrocytes in ACC influence anxiety behavior in mouse models of NP remain largely unexplored.

Methods: Utilizing the traditional spared nerve injury (SNI) surgical model, we employed chemogenetic approaches, immunofluorescence, and western blot to investigate the functional significance and interactive dynamics between ACC astrocytes and excitatory neurons.

Results: Our results revealed that SNI surgery induces NP and delayed anxiety-like behaviors, accompanied by increased astrocyte activity in the ACC. Chemogenetic manipulation demonstrated that inhibiting astrocytes alleviates anxiety symptoms, while activating them exacerbates anxiety-like behaviors, affecting local excitatory neurons and synapse density. Direct manipulation of ACC excitatory neurons also significantly impacted anxiety-like behaviors.

Conclusion: Our results highlight the pivotal role of ACC astrocytes in modulating anxiety-like behavior, suggesting a novel therapeutic strategy for anxiety associated with NP by targeting astrocyte function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cns.70227DOI Listing

Publication Analysis

Top Keywords

anxiety-like behaviors
16
modulating anxiety-like
8
neuropathic pain
8
anterior cingulate
8
cingulate cortex
8
acc astrocytes
8
excitatory neurons
8
astrocytes
6
anxiety-like
6
acc
6

Similar Publications

Introduction: Access to electric light has exposed living organisms to varying intensities of light throughout the 24 h day. Dim light at night (DLAN) is an inappropriate signal for the biological clock, which is responsible for the circadian organization of physiology. During the gestational period, physiological adaptations occur to ensure a successful pregnancy and optimal fetal development.

View Article and Find Full Text PDF

Parvalbumin interneurons in the anterior cingulate cortex exhibit distinct processing patterns for fear and memory in rats.

Heliyon

January 2025

Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.

The anterior cingulate cortex is responsible for multiple cognitive functions like fear, pain management, decision-making, risk and reward assessment, and memory consolidation. However, its cell-type-specific functions are not clearly understood. To reveal the selective functional role of Parvalbumin-expressing GABAergic interneurons in the ACC, we knocked down (KD) the PV gene in-vivo in rats.

View Article and Find Full Text PDF

Aims: The comorbidity of anxiety-like symptoms in neuropathic pain (NP) is a significant yet often overlooked health concern. Anxiety sufferers may have a lower tolerance for pain, but which is difficult to treat. Accumulating evidence suggests a strong link between astrocytes and the manifestation of NP with concurrent anxiety-like behaviors.

View Article and Find Full Text PDF

Background: Cypermethrin (CYP), a synthetic pyrethroid widely used to control plant pests, has been associated with various diseases in humans exposed to pesticides, either directly or indirectly. This study aimed to examine the effects of CYP on learning and memory functions, as well as anxiety-like behavior.

Methods: Forty male Wistar rats (8 weeks old) were randomly assigned to 4 groups: The first group served as the control, while the other three groups received different doses of CYP (5, 20, and 80 mg/kg) via gavage once daily for one month.

View Article and Find Full Text PDF

Background: Opioid-induced hyperalgesia (OIH) is a serious complication during the pain treatment. Ketamine has been commonly reported to treat OIH, but the mechanisms remain unclear. Gut microbiota is recently recognized as one of the important mechanisms underlying the occurrence and treatment of OIH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!