Objective: This study aims to investigate the effect of Gallic Acid (GA) on the alleviation of chemotherapy-induced bone marrow suppression, with a comparison to Diyu sheng bai tablets (DYSB) and RhG-CSF.
Methods: A mouse model of bone marrow suppression was established in BALB/c mice using intraperitoneal injections of cyclophosphamide (CTX). All procedures were performed after obtaining ethical clearance from the institutional animal ethics committee. Mice were treated with low (100 mg/kg/d), medium (200 mg/kg/d), and high (400 mg/kg/d) doses of Gallic Acid (GA) to mitigate CTX-induced bone marrow suppression. In parallel, mice in the positive control group were also treated with DYSB and RhG-CSF at their respective standard doses (DYSB: 100 mg/kg/day, RhG-CSF: 125 mg/kg/day). The efficacy of GA in alleviating chemotherapy-induced bone marrow suppression was evaluated through blood cell counts, immune organ (thymus and spleen) indices, bone marrow nucleated cell (BMNC) counts, cell cycle analysis, apoptosis, histopathology of bone marrow and spleen, and analysis of splenic hematopoietic factors.
Results: CTX induced a decrease in peripheral blood cells and BMNC counts, reduced spleen and thymus indices, and diminished abnormal pathology of bone marrow and spleen, as well as decreasing disturbances in hematopoietic factors. GA was able to alleviate these abnormalities in the bone marrow. It modulated cell proliferation and apoptosis, adjusted the proportion of cells in the G0/G1 phase, and reduced apoptosis in femoral bone marrow.
Conclusion: Gallic Acid (GA) alleviates chemotherapy-induced bone marrow suppression by improving immune organ function, promoting bone marrow cell recovery, and inhibiting apoptosis. These findings support GA as a potential adjunct therapy for chemotherapy, with promising clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0109298673354122241220051407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!