[Construction of a visual intelligent identification model for in Yunnan Province based on the EfficientNet-B4 model].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.

Published: January 2025

Objective: To construct a visual intelligent recognition model for in Yunnan Province based on the EfficientNet-B4 model, and to evaluate the impact of data augmentation methods and model hyperparameters on the recognition of .

Methods: A total of 400 and 400 snails were collected from Yongsheng County, Yunnan Province in June 2024, and snail images were captured following identification and classification of 300 and 300 snails. A total of 925 images and 1 062 snail images were collected as a dataset and divided into a training set and a validation set at a ratio of 8:2, while 352 images captured from the remaining 100 and 354 images from the remaining 100 snails served as an external test set. All acquired images were subjected to preprocessing, including cropping and resizing. Three data augmentation approaches were employed, including baseline, Mixup and Gaussian blurring, and model hyperparameters included two optimization algorithms of adaptive moment estimation (Adam) and stochastic gradient descent (SGD), two loss functions of focal loss and cross entropy loss, and two learning rate decay strategies of cosine annealing and multi-step. The intelligent recognition models of and snails were constructed based on the EfficientNet-B4 model, and 7 training strategy groups were generated by combinations of different data augmentation approaches and hyperparameters. The performance of intelligent recognition models was tested with external test sets, and evaluated with accuracy, precision, recall, F1 score, loss, Youden's index, and the area under the receiver operating characteristic curve (AUC) under different training strategies.

Results: The variation of loss values was comparable among intelligent recognition models with different data augmentation approaches. The Group 4 model constructed with Mixup and Gaussian blurring data augmentation approaches showed the optimal performance, with an accuracy of 90.38%, precision of 90.07%, F1 score of 89.44%, Youden's index of 0.81 and AUC of 0.961 in the external test set. The accuracy of models using the SGD optimizer reduced by 29.16% as compared to those using the Adam optimizer (χ = 81.325, < 0.001), and the accuracy of models using the cross entropy loss function reduced by 0.80% as compared to the Group 4 model (χ = 3.147, > 0.05), while the accuracy of models using the multi-step learning rate decay strategy increased by 0.65% as compared to the Group 4 model (χ = 0.208, > 0.05). In addition, the model with the baseline + Mixup + Gaussianblurring data augmentation approach and hyperparameters of Adam optimizer, focal loss function and multi-step learning rate decay strategy showed the highest performance, with an accuracy of 91.03%, precision of 91.97%, recall of 88.11%, F1 score of 90.00%, Youden's index of 0.82 and AUC values of 0.969 in external test set, respectively.

Conclusions: The intelligent recognition model of based on EfficientNet-B4 model is accurate for identification of and snails in Yunnan Province.

Download full-text PDF

Source
http://dx.doi.org/10.16250/j.32.1915.2024194DOI Listing

Publication Analysis

Top Keywords

data augmentation
24
intelligent recognition
20
yunnan province
16
based efficientnet-b4
16
external test
16
augmentation approaches
16
model
12
efficientnet-b4 model
12
test set
12
learning rate
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!