Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs. It is shown that increased sulfation and higher molecular weight enhance GAG binding to OmcB. These findings are further validated using cell assays, which shows that the addition of sulfated GAGs reduces OmcB-cell binding and inhibits the attachment of C. pneumoniae elementary bodies (EBs), underscoring the pivotal role of specific GAGs in chlamydial infections. Notably, heparin exhibites a stronger inhibitory effect on OmcB compare to GAGs with similar sulfation degrees and molecular weights, suggesting that particular molecular architectures may optimize binding interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202400443DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
gags
8
pivotal role
8
sulfated gags
8
gags sulfation
8
binding
6
molecular
5
sulfated glycosaminoglycans
4
glycosaminoglycans inhibitors
4
inhibitors chlamydia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!