Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to apply artificial intelligence (AI) algorithms to create a highly predictive risk stratification indicator, applicable to the UK's transplant selection process. Pre-transplant characteristics from 12,661 live-donor kidney transplants (performed between 2007 and 2022) from the United Kingdom Transplant Registry database were analyzed. The transplants were randomly divided into training (70%) and validation (30%) sets. Death-censored graft survival was the primary performance indicator. We experimented with four machine learning (ML) models assessed for calibration and discrimination [integrated Brier score (IBS) and Harrell's concordance index]. We assessed the potential clinical utility using decision curve analysis. XGBoost demonstrated the best discriminative performance for survival (area under the curve = 0.73, 0.74, and 0.75 at 3, 7, and 10 years post-transplant, respectively). The concordance index was 0.72. The calibration process was adequate, as evidenced by the IBS score of 0.09. By evaluating possible donor-recipient pairs based on graft survival, the AI-based UK Live-Donor Kidney Transplant Outcome Prediction has the potential to enhance choices for the best live-donor selection. This methodology may improve the outcomes of kidney paired exchange schemes. In general terms we show how the new AI and ML tools can have a role in developing effective and equitable healthcare.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0886022X.2024.2431147DOI Listing

Publication Analysis

Top Keywords

live-donor kidney
12
kidney transplant
12
artificial intelligence
8
transplant outcome
8
outcome prediction
8
graft survival
8
kidney
5
transplant
5
intelligence assisted
4
assisted risk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!