Obesity is a modifiable risk factor for breast cancer. Yet, how obesity contributes to cancer initiation is not fully understood. The goal of this study was to determine if the body mass index (BMI) and metabolic hallmarks of obesity are related to DNA damage in normal breast tissue. In a mouse model of diet-induced obesity, weight gain was associated with elevated levels of DNA double-strand breaks in the mammary gland. We also found a positive correlation between BMI and DNA breaks in the breast epithelium of premenopausal women (but not postmenopausal women). High BMI was associated with elevated systemic and tissue-level oxidative DNA damage across the lifespan, and we propose that the breast epithelium undergoing menstruous proliferation waves is particularly prone to the generation of DNA breaks from oxidative lesions. Ancestry was an important modulator of the obesity-DNA break connection. Compared to non-Hispanic Whites, women identifying as African Americans had higher levels of DNA breaks, as well as elevated leptin and IGF-1. In 3D cultures of breast acini, both leptin and IGF-1 caused an accumulation of DNA damage. The results highlight a connection between premalignant genomic alterations in the breast epithelium and metabolic health modulated by obesity and ancestry. They call for attention on biological determinants of breast cancer risk disparities.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13058-025-01961-7DOI Listing

Publication Analysis

Top Keywords

dna damage
16
breast epithelium
16
dna breaks
12
dna
8
breast
8
breast cancer
8
associated elevated
8
levels dna
8
leptin igf-1
8
obesity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!