Introduction: Diabetic nephropathy (DN) is a common diabetes-related complication with unclear underlying pathological mechanisms. Although recent studies have linked glycolysis to various pathological states, its role in DN remains largely underexplored.
Methods: In this study, the expression patterns of glycolysis-related genes (GRGs) were first analyzed using the GSE30122, GSE30528, and GSE96804 datasets, followed by an evaluation of the immune landscape in DN. An unsupervised consensus clustering of DN samples from the same dataset was conducted based on differentially expressed GRGs. The hub genes associated with DN and glycolysis-related clusters were identified via weighted gene co-expression network analysis (WGCNA) and machine learning algorithms. Finally, the expression patterns of these hub genes were validated using single-cell sequencing data and quantitative real-time polymerase chain reaction (qRT-PCR).
Results: Eleven GRGs showed abnormal expression in DN samples, leading to the identification of two distinct glycolysis clusters, each with its own immune profile and functional pathways. The analysis of the GSE142153 dataset showed that these clusters had specific immune characteristics. Furthermore, the Extreme Gradient Boosting (XGB) model was the most effective in diagnosing DN. The five most significant variables, including GATM, PCBD1, F11, HRSP12, and G6PC, were identified as hub genes for further investigation. Single-cell sequencing data showed that the hub genes were predominantly expressed in proximal tubular epithelial cells. In vitro experiments confirmed the expression pattern in NC.
Conclusion: Our study provides valuable insights into the molecular mechanisms underlying DN, highlighting the involvement of GRGs and immune cell infiltration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s13062-025-00601-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!