Background: Fluoroquinolones are indispensable antibiotics used in treating bacterial infections in both human and veterinary medicine. However, resistance to these drugs presents a growing challenge. The SOS response, a DNA repair pathway activated by DNA damage, is known to influence resistance development, yet its role in fluoroquinolone resistance is not fully understood. This study aims to unfold the mechanisms of fluoroquinolone resistance by investigating the impact of the SOS response on bacterial adaptation.
Results: We exposed Escherichia coli to four fluoroquinolones-ciprofloxacin, enrofloxacin, levofloxacin, and moxifloxacin. Using a recA knockout mutant, deficient in the SOS response, as a control, we assessed how the presence or absence of this pathway affects resistance development. Our findings demonstrated that the rate of resistance evolution varied between the different fluoroquinolones. Ciprofloxacin, enrofloxacin, and moxifloxacin exposures led to the most evident reliance on the SOS response for resistance, whereas levofloxacin exposed cultures showed less dependency. Whole genome analysis indicated distinct genetic changes associated with each fluoroquinolone, highlighting potential different pathways and mechanisms involved in resistance.
Conclusions: This study shows that the SOS response plays a crucial role in resistance development to certain fluoroquinolones, with varying dependencies per drug. The characteristic impact of fluoroquinolones on resistance mechanisms emphasizes the need to consider the unique properties of each antibiotic in resistance studies and treatment strategies. These findings are essential for improving antibiotic stewardship and developing more effective, tailored interventions to combat resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12866-025-03771-5 | DOI Listing |
BMC Microbiol
January 2025
University of Amsterdam, Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, Amsterdam, The Netherlands.
Background: Fluoroquinolones are indispensable antibiotics used in treating bacterial infections in both human and veterinary medicine. However, resistance to these drugs presents a growing challenge. The SOS response, a DNA repair pathway activated by DNA damage, is known to influence resistance development, yet its role in fluoroquinolone resistance is not fully understood.
View Article and Find Full Text PDFLeuk Lymphoma
January 2025
Unit of Hematology, Azienda Ospedaliera Universitaria Senese and University of Siena, Siena, Italy.
Treatment strategies for early stage diffuse large B-cell lymphoma (ES-DLBCL) include R-CHOP, with a similar schedule to that used in advanced stage, or a reduced number of cycles followed by radiation therapy (RT). We retrospectively analyzed 179 ES-DLBCL patients, managed according to the clinical practice. Treatment regimens include chemoimmunotherapy 4-6 cycles +/- RT as consolidation.
View Article and Find Full Text PDFUnlabelled: The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China. Electronic address:
The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN 55108, USA.
Shiga toxin-producing Escherichia coli (STEC) infections pose a significant public health challenge, characterized by severe complications including hemolytic uremic syndrome (HUS) due to Shiga toxin (Stx) production. Current therapeutic approaches encounter a critical limitation, as conventional antibiotic treatment is contraindicated due to its propensity to trigger bacterial SOS response and subsequently enhance Stx production, which increases the likelihood of developing HUS in antibiotic-treated patients. The lack of effective, safe therapeutic options has created an urgent need for alternative treatment strategies for STEC infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!