Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation. Despite the absence of Xist expression, PGCs still harbor a fully silent X chromosome at embryonic day 9.5 (E9.5). Subsequently, X-linked genes undergo gradual and distinct regional reactivation. At E12.5, a substantial part of the inactive X chromosome resists reactivation, retaining an epigenetic memory of its silencing. Our findings define the orchestration of reactivation of the inactive X chromosome, a key event in female PGC reprogramming with direct implications for reproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41594-024-01469-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!