Accurately predicting satellite clock deviation is crucial for improving real-time location accuracy in a GPS navigation system. Therefore, to ensure high levels of real-time positioning accuracy, it is essential to address the challenge of enhancing satellite clock deviation prediction when high-precision clock data is unavailable. Given the high frequency, sensitivity, and variability of space-borne GPS satellite atomic clocks, it is important to consider the periodic variations of satellite clock bias (SCB) in addition to the inherent properties of GPS satellite clocks such as frequency deviation, frequency drift, and frequency drift rate to improve SCB prediction accuracy and gain a better understanding of its characteristics. In recent applications, deep learning models have significantly improved handling time-series data. This paper presents four machine learning prediction models that take into consideration periodic variations. Specifically, we utilize precision satellite clock bias data from the International GNSS Service forecast experiments and assess the predictive effects of various models including backpropagation neural network (BPNN), wavelet neural network (WNN), long short-term memory (LSTM), and gated recurrent units (GRUs). The predicted sequences of the four machine learning models are compared with the quadratic polynomial(QP) model. The average prediction accuracy of forecasting has improved by approximately (39.45, 57.57, 27.28, 29.14)% during 1-day forecasting. The results indicate that the machine learning models incorporating periodic variations outperform the standard quadratic polynomial model in terms of predictive accuracy, and the WNN model is better than that of these three machine learning models. This highlights the promising potential of deep learning models in forecasting satellite clock bias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-87328-6 | DOI Listing |
Clin Oral Implants Res
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran.
Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.
Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.
Sci Prog
January 2025
Department of Industrial Engineering, UiT-The Arctic University of Norway, Narvik, Norway.
Background: Retail involves directly delivering goods and services to end consumers. Natural disasters and epidemics/pandemics have significant potential to disrupt supply chains, leading to shortages, forecasting errors, price increases, and substantial financial strains on retailers. The COVID-19 pandemic highlighted the need for retail sectors to prepare for crisis impacts on sales forecasts by regularly assessing and adjusting sales volumes, consumer behavior, and forecasting models to adapt to changing conditions.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The department of oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.
View Article and Find Full Text PDFData Brief
February 2025
Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh.
In the field of agriculture, particularly within the context of machine learning applications, quality datasets are essential for advancing research and development. To address the challenges of identifying different mango leaf types and recognizing the diverse and unique characteristics of mango varieties in Bangladesh, a comprehensive and publicly accessible dataset titled "BDMANGO" has been created. This dataset includes images essential for research, featuring six mango varieties: Amrapali, Banana, Chaunsa, Fazli, Haribhanga, and Himsagar, which were collected from different locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!