Predicting branch retinal vein occlusion development using multimodal deep learning and pre-onset fundus hemisection images.

Sci Rep

Department of Ophthalmology, Gangnam Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea.

Published: January 2025

Branch retinal vein occlusion (BRVO) is a leading cause of visual impairment in working-age individuals, though predicting its occurrence from retinal vascular features alone remains challenging. We developed a deep learning model to predict BRVO based on pre-onset, metadata-matched fundus hemisection images. This retrospective cohort study included patients diagnosed with unilateral BRVO from two Korean tertiary centers (2005-2023), using hemisection fundus images from 27 BRVO-affected eyes paired with 81 unaffected hemisections (27 counter and 54 contralateral) for training. A U-net model segmented retinal optic discs and blood vessels (BVs), dividing them into upper and lower halves labeled for BRVO occurrence. Both unimodal models (using either fundus or BV images) and a BV-enhanced multimodal model were constructed to predict future BRVO. The multimodal model outperformed the unimodal models achieving an area under the receiver operating characteristic curve of 0.76 (95% confidence interval [CI], 0.66-0.83) and accuracy of 68.5% (95% CI 58.9-77.1%), with predictions focusing on arteriovenous crossing regions in the retinal vascular arcade. These findings demonstrate the potential of the BV-enhanced multimodal approach for BRVO prediction and highlight the need for larger, multicenter datasets to improve its clinical utility and predictive accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85777-7DOI Listing

Publication Analysis

Top Keywords

branch retinal
8
retinal vein
8
vein occlusion
8
deep learning
8
fundus hemisection
8
hemisection images
8
retinal vascular
8
fundus images
8
unimodal models
8
bv-enhanced multimodal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!