Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation.

Anal Chem

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

Published: January 2025

The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge. Herein, a combinatorial DNA logic operation-guided multiplex PEC sensor is constructed to facilely distinguish and simultaneously monitor two core biomarkers that are essential for identifying asymptomatic Alzheimer patients and predicting the progression of the disease. The aptamers of amyloid-β oligomers (AβO) and Tau protein are simply integrated at the high-performance In-TBAPy photocathode. In the presence of AβO and Tau protein, the aptamer-target affinity complexes are formed and subsequently detached from the electrode surface, resulting in an increase of photocurrent. Through programming concatenated DNA molecular circuits, a 2-target input OR logic gate not only simplifies the manufacturing process of the multiplex PEC sensor but also realizes rapid and intelligent multiple-target recognition. As a conceptual prototype for the development of more sophisticated and complicated logic devices, the proposed DNA molecular logic system may open a new horizon for rapid disease diagnosis and POC analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c05904DOI Listing

Publication Analysis

Top Keywords

core biomarkers
12
multiple core
8
combinatorial dna
8
dna logic
8
multiplex pec
8
pec sensor
8
aβo tau
8
tau protein
8
dna molecular
8
logic
5

Similar Publications

Colony-stimulating factor 1 receptor (CSF1R) is almost exclusively expressed on microglia in the human brain and thus, has promise as a biomarker for imaging microglia density as a proxy for neuroinflammation. [C]CPPC is a radiotracer with selective affinity to CSF1R, and has been evaluated for in-human microglia PET imaging. The flourine-18 labeled CPPC derivative, 5-cyano-N-(4-(4-(2-[F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([F]FCPPC), was previously synthesized, however, with a low radiochemical yield using manual radiosynthesis.

View Article and Find Full Text PDF

Background: Sarcopenia, an aseptic chronic inflammatory disease, is a complex and debilitating disease characterized by the progressive degeneration of skeletal muscle. PANoptosis, a novel proinflammatory programmed cell death pathway, has been linked to various diseases. However, the precise role of PANoptosis-related features in sarcopenia remains uncertain.

View Article and Find Full Text PDF

Effects of patent foramen ovale in migraine: a metabolomics-based study.

J Physiol

January 2025

Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.

Patent foramen ovale (PFO), a cardiac anatomical anomaly inducing abnormal haemodynamics, leads to a paradoxical bypass of the pulmonary circulation. PFO closure might alleviate migraines; however, clinical evidence and basic experiments for the relationship are lacking. To explore the effect of PFO on migraine, 371 migraineurs finishing blood tests and contrast transthoracic echocardiography for the detection of PFO were prospectively included.

View Article and Find Full Text PDF

Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation.

Anal Chem

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.

View Article and Find Full Text PDF

Host-microbiome-dietary interactions play crucial roles in regulating human health, yet their direct functional assessment remains challenging. We adopted metagenome-informed metaproteomics (MIM), in mice and humans, to non-invasively explore species-level microbiome-host interactions during commensal and pathogen colonization, nutritional modification, and antibiotic-induced perturbation. Simultaneously, fecal MIM accurately characterized the nutritional exposure landscape in multiple clinical and dietary contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!