Purpose: To investigate the feasibility and accuracy (trueness and precision) of facial scanning and virtual patient representation (VPR).
Materials And Methods: One participant was recruited and informed consent was obtained. VPR was performed 30 times with a custom fabricated intraoral scan body (ISB). Thirteen adhesive markers were added to the face as an extraoral scan body (ESB). Two facial scans were obtained for each VPR using an infra-red laser accessory sensor (Structure sensor; Occipital Inc) mounted on a computer tablet (iPad Pro; Apple Inc), including one with seated ISB and one without ISB. Two maxillary intraoral scans were obtained using an intraoral scanner (Omnicam; Dentsply Sirona) with and without the ISB. All files were imported to a dental software program (exocad; exocad GmbH) and VPR was obtained by aligning the facial and IOS scans using the ISB and ESB as common elements for alignment. Five fiducial face landmarks, four intraoral dental landmarks, and six perioral landmarks were selected for measurements. A total of 32 linear measurements, including 14 face-face (for facial scan accuracy) and 18 face-dental (for VPR accuracy) representing total face, lower face, and perioral regions, were performed directly using a digital caliper (FINO Digital Caliper; FINO GmbH) and virtually on the VPR. Trueness was evaluated by mean absolute difference (MAD) between the virtual and direct measurements, and the standard deviation represented Precision. Statistical analyses were performed with a statistical software package (IBM SPSS Statistics v25; IBM Corp), with α = 0.05. Data were analyzed for normality with Shapiro-Wilk test, and 1-sample t- (or Wilcoxon signed rank test), technical error of measurement (TEM), and relative error magnitude (REM).
Results: The facial scan had 2.04, 1.66, 0.8 trueness, and 1.05, 0.92, 0.91 precision for total, lower face, and perioral regions. VPR had higher MAD (lower trueness) than facial scan, including 3.32, 2.40, 1.21 trueness and 2.2, 1.47, 1.2 precision for total, lower face, and perioral regions. Both TEM and REM were lowest for the perioral region and increased with increasing measurement distance.
Conclusion: Error in face scanning increased with increased distance and intricate details. VPR accuracy was lower than face scan accuracy because of added errors in the alignment process. The investigated VPR workflow might be feasible for treatment planning and smile design. However, it would be unreliable for more demanding prostheses manufacturing purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jopr.14024 | DOI Listing |
Orthod Fr
January 2025
5 rue Georges Meynieu, 44300 Nantes, France
Introduction: The relationship between facial asymmetry and cervical anomaly is rarely mentioned in the diagnosis of dento-maxillo-facial orthopaedics. It is regrettable that the study of the cervical spine is often ignored in the etio-pathogenesis of these dysmorphoses, particularly in cases of facial asymmetry.
Objective: The aim is twofold: to encourage orthodontists and maxillofacial surgeons to make a systematic study of the cervical spine in craniofacial dysmorphoses and in particular craniofacial asymmetries, without claiming that they are becoming specialists in cervical spine pathology, and to introduce the necessary training in malformations of this anatomical region as part of the orthodontist specialisation curriculum.
J Oral Rehabil
January 2025
Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.
Background: For restorative demands, increased vertical dimension of occlusion (VDO) is sometimes necessary, as facial changes can be perceptible.
Objectives: This study aimed to evaluate the perception of facial change due to increased VDO and associated soft tissue changes using 3D-scanned facial images.
Methods: Forty participants with healthy dentition and no loss of VDO were recruited.
J Prosthodont
January 2025
Department of Prosthodontics, Jordan University of Science & Technology, Irbid, Jordan.
Purpose: To investigate the feasibility and accuracy (trueness and precision) of facial scanning and virtual patient representation (VPR).
Materials And Methods: One participant was recruited and informed consent was obtained. VPR was performed 30 times with a custom fabricated intraoral scan body (ISB).
J Vet Dent
January 2025
Department of Dentistry, Oral and Maxillo-facial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Group, Swindon, UK.
Canine acanthomatous ameloblastoma (CAA) is an invasive benign epithelial odontogenic tumour most commonly affecting the mandible of large breed dogs. To the author's knowledge, this report describes the first computer-aided design patient-specific implant (PSI) that has been placed for a critical sized bone defect in mandibular reconstruction of a dog in the UK. The aim was to restore mandibular stability using a regenerative approach combining a titanium locking plate and compression-resistant matrix infused with recombinant human bone morphogenetic protein-2 (rhBMP-2) to bridge the 85 mm mandibular defect created by a segmental mandibulectomy.
View Article and Find Full Text PDFCureus
December 2024
Department of Oculo-Facial Plastic and Reconstructive Surgery, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, IRN.
Bilateral preseptal cellulitis without accompanying sinusitis or skin trauma is uncommon. In this report, we present a case of bilateral preseptal cellulitis and an upper eyelid abscess in an otherwise healthy child. A nine-year-old girl presented with severe and progressive bilateral swelling of the upper lids that showed an unsatisfactory response to medical treatments (intravenous ceftazidime and vancomycin) and warranted a referral to our facility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!