In vertebrates, glucocorticoids can be upregulated in response to both psychosocial and energetic stressors, making it difficult to identify the cause of elevated glucocorticoid concentrations when both types of stressors are present. This problem has been particularly challenging in studies of social dominance rank in wild animals. In contrast to glucocorticoids, thyroid hormone concentrations are largely unaffected by psychosocial stressors and therefore offer a better estimate of energetic challenges. Here, we measured faecal metabolites of both triiodothyronine (mT3) and glucocorticoids (fGC) in wild baboons and assessed how these hormonal profiles vary with male dominance rank. We found that alpha males have lower mT3 and higher fGC than males of other ranks, indicating sustained energetic costs of alpha status. By contrast, low-ranking males have higher mT3 but similar fGC concentrations than non-alpha high-ranking males, reflecting their lower exposure to energetic stressors but greater vulnerability to psychosocial stressors than higher-ranking males. We also found that mate-guarding of fertile females, a behaviour expressed at higher rates by alpha males, partly explains the energetic costs of high social status. These findings offer evidence of the different types of costs experienced by low- and high-ranking animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rspb.2024.1790 | DOI Listing |
Proc Biol Sci
January 2025
Department of Biology, Duke University, Durham, NC, USA.
In vertebrates, glucocorticoids can be upregulated in response to both psychosocial and energetic stressors, making it difficult to identify the cause of elevated glucocorticoid concentrations when both types of stressors are present. This problem has been particularly challenging in studies of social dominance rank in wild animals. In contrast to glucocorticoids, thyroid hormone concentrations are largely unaffected by psychosocial stressors and therefore offer a better estimate of energetic challenges.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.
Despite pleas to consider both evolutionary and multistressor climate change perspectives to improve ecological risk assessment, the much needed combination of both perspectives is largely missing. This is especially important when evaluating the costs of the evolution of genetic tolerance to pollutants as these costs may become visible only under combined exposure to the pollutant and warming due to energetic constraints. We investigated the costs of chlorpyrifos tolerance in when sequentially exposed to 4-day pesticide treatments and 4-day heat spike treatments.
View Article and Find Full Text PDFAm J Primatol
January 2025
Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, México.
Parasitism, a widespread nutrient acquisition strategy among animals, results from a long evolutionary history where one species derives its metabolic needs from another. Parasites can significantly reduce host fitness, affecting reproduction, growth, and survivability. Vertebrate hosts exhibit defensive strategies against parasites, including "sickness behaviors" such as lethargy and self-grooming to remove ectoparasites.
View Article and Find Full Text PDFCurr Biol
January 2025
Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway.
Understanding the movements of highly mobile animals is challenging because of the many factors they must consider in their decision-making. Many seabirds, for example, are adapted to use winds to travel long distances at low energetic cost but also potentially benefit from targeting specific foraging hotspots. To investigate how an animal makes foraging decisions, given the inevitable trade-off between these factors, we tracked over 600 foraging trips of breeding Manx shearwaters (Puffinus puffinus; N = 218 individuals) using GPS accelerometers.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope () and rufous hummingbirds () at a stopover site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!