In the search of new bioactive and biobased films, the use of lignin nanoparticles (LNP) and cellulose nanofibers (CNF) has gained potential relevance in the last years. In this context, an enzymatic and environmentally friendly pretreatment with laccases has been proposed in this work to modify the properties of the developed cellulose-lignin nanocomposite films. Thus, the laccase treatment successfully polymerized kraft lignin as indicated by the increase in weight average molecular weight (from 3621 to 5681 Da) and the reduction in phenol content (from 552 to 324 mg GAE/g lignin). Moreover, this polymerization also caused a significant reduction in the size of the resulting LNP (6.8 ± 2.4 nm) compared to those obtained from untreated lignin (62 ± 22 nm). The incorporation of both untreated and treated LNP conferred antioxidant, antibacterial and UV-shielding capabilities to the final LNP-CNF films, observing higher antioxidant and UV-shielding values with polymerized LNP probably due to its tiny size and conjugated functional groups, respectively. Furthermore, films with 5 % LNP also showed better thermal stability, elongation at break, water vapor permeability and transparency, compared to CNF control films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.140051 | DOI Listing |
Macromol Rapid Commun
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Copenhagen, 1958, Denmark.
Lignin's complex and heterogeneous molecular structure poses significant challenges for accurate molar mass determination, which is important for its utilization in industrial applications, such as biochemicals, nanoparticles, biobased binders, and biofuels. This study evaluates the potential of Taylor Dispersion Analysis (TDA) for measuring lignin size and compares it with size-exclusion chromatography (SEC) and diffusion-ordered spectroscopy (DOSY) NMR. Using dual Gaussian fitting, flow-induced dispersion analysis (FIDA), a TDA-based method, successfully determined the average hydrodynamic radii of multiple species in solvent-fractionated soda grass lignin samples, producing results consistent with DOSY.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Curcumin has a great effect on alleviating oxidative stress, but its poor stability and low biocompatibility limit its application in therapeutic field. In order to overcome these limitations of curcumin, in this study, curcumin was grafted to lignin by esterification, and then prepared into nanoparticles. The results showed that the photothermal stability of curcumin was effectively improved.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Forest Science (ICIFOR-INIA), CSIC, Ctra. de la Coruña, km 7,5, 28040, Madrid, Spain.
In the search of new bioactive and biobased films, the use of lignin nanoparticles (LNP) and cellulose nanofibers (CNF) has gained potential relevance in the last years. In this context, an enzymatic and environmentally friendly pretreatment with laccases has been proposed in this work to modify the properties of the developed cellulose-lignin nanocomposite films. Thus, the laccase treatment successfully polymerized kraft lignin as indicated by the increase in weight average molecular weight (from 3621 to 5681 Da) and the reduction in phenol content (from 552 to 324 mg GAE/g lignin).
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
The development of green and easily regulated amphiphilic particles is crucial for advancing Pickering emulsion catalysis. In this study, lignin particles modified via sulfobutylation were employed as solid emulsifiers to support Pd nanoparticles (NPs), thereby enhancing the catalytic efficiency of biphasic reactions. Sulfobutylation of lignin effectively adjusted the hydrophilic-hydrophobic balance, resulting in controlled emulsion types and droplet sizes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!