As an emerging ionic sensor with low-voltage operation (<1 V), biocompatibility, and stable operation in aqueous environments, organic electrochemical transistors (OECTs) have attracted significant research interest for various biofluid-related ion detection, where minor ion concentration variations can effectively reflect health or pathology states. However, OECT-based ion sensors are currently limited by restricted device transconductance g and stabilites, which severely hinder their applications in actual ion sensing scenarios. Here, ultra-sensitive multi-ion sensors based on high-performance n-type vertical OECTs (accumulation mode, g = 58 mS) for Na, K, and Ca detection in a practical biofluid (effluent from continuous renal replacement therapy), are demonstrated with high accuracy and stability, which are comparable to conventional Roche method. High current sensitivities (14.0 mA/dec for Na, 1.73 mA/dec for K, 4.09 mA/dec for Ca, which is more than one order of magnitude larger than ever reported for ion-sensitive transistors), and accuracy (inaccuracy <18.5 %), fast response times (<10 s), and reversible sensing capability are accomplished by coupling micrometer size vertical channel structure with optimized ion-selective membranes. This work introduces a general approach for reliable ion detection and could be effectively extended to other biosensors with high sensitivity and accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2025.127577 | DOI Listing |
Talanta
January 2025
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Electronic address:
As an emerging ionic sensor with low-voltage operation (<1 V), biocompatibility, and stable operation in aqueous environments, organic electrochemical transistors (OECTs) have attracted significant research interest for various biofluid-related ion detection, where minor ion concentration variations can effectively reflect health or pathology states. However, OECT-based ion sensors are currently limited by restricted device transconductance g and stabilites, which severely hinder their applications in actual ion sensing scenarios. Here, ultra-sensitive multi-ion sensors based on high-performance n-type vertical OECTs (accumulation mode, g = 58 mS) for Na, K, and Ca detection in a practical biofluid (effluent from continuous renal replacement therapy), are demonstrated with high accuracy and stability, which are comparable to conventional Roche method.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, Guangdong, 515063, P.R. China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, P.R. China. Electronic address:
CYFRA21-1 is a tumor marker for lung cancer, and its rapid and accurate detection can provide evidence for the early diagnosis of lung cancer. In this work, Bi-Fe turnbull blue analogues (Bi-Fe-TBA) were synthesized by the self-templating method. BiO-SFNs was prepared by simple oxidation in air using Bi-Fe-TBA as a template.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Shuwen Biotech Co., Ltd., Moganshan National High tech Zone, Building 3, No. 333, Changhong Middle Street, Deqing, China.
Over the past five years, circulating tumor DNA (ctDNA) testing has emerged as a game-changer in cancer research, serving as a less invasive and highly sensitive method to monitor tumor dynamics. CtDNA testing has a wide range of potential applications in breast cancer (BC) management, including diagnosis, monitoring treatment responses, identifying resistance mutations, predicting prognosis, and detecting future relapses. In this review, we focus on the prognostic and predictive value of ctDNA testing for BC in both neoadjuvant and adjuvant settings.
View Article and Find Full Text PDFTalanta
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China. Electronic address:
The rapid, sensitive and reliable detection of oral cancer overexpressed 1 (ORAOV 1) is crucial for the early, non-invasive diagnosis of oral squamous cell carcinoma (OSCC). Herein, we are the first to construct an ultrasensitive electrochemical (EC) biosensor based on an entropy-driven "two-way signal output" (TWSO) cyclic circuit for salivary ORAOV 1 detection. This innovative TWSO cyclic circuit can skillfully convert by-products into desired signal-generating units, not only reducing the excessive accumulation of by-products but also improving the utilization efficiency of output chains, thereby achieving rapid reaction kinetics and high signal outputs.
View Article and Find Full Text PDFTalanta
January 2025
Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China. Electronic address:
Pre-designed core-shell metal-organic frameworks (MOFs@MOFs) with customized functionalities can enhance the material properties compared to conventional single MOFs. The porous carbon composites derived from MOFs@MOFs also have excellent functionality due to the presence of multiple metal/metal oxide nanoparticles. This paper synthesized a novel MOFs@MOFs composite (MIL-101(Fe)@Ni-MOF) with a core-shell structure with MIL-101(Fe) as the core and Ni-MOF as the shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!