LPCAT1 reduces inflammatory response, apoptosis and barrier damage of nasal mucosal epithelial cells caused by allergic rhinitis through endoplasmic reticulum stress.

Tissue Cell

Department of Facial Features, 970 Hospital, Joint Service Support Force of the Chinese People's Liberation Army, Yantai, Shandong, China. Electronic address:

Published: December 2024

Allergic rhinitis (AR), common in children and adolescents, involves Lysophosphatidylcholine acyltransferase 1 (LPCAT1) catalyzing surfactant lipid biosynthesis and suppressing endoplasmic reticulum expression. However, the precise mechanism underlying the impact of LPCAT1 on epithelial cell damage in AR remains elusive. Hence, the present investigation elucidated the potential effect of LPCAT1 on epithelial cell damage in AR by inhibiting endoplasmic reticulum stress. To assess cell viability, CCK8 assay was employed. Additionally, western blotting was utilized to evaluate the expression of endoplasmic reticulum stress-associated proteins ATF6, CHOP, p-eIF2α, p-IRE1, and LPCAT1. Subsequently, an interference plasmid targeting LPCAT1 was constructed, and western blot analysis was conducted to determine interference level of LPCAT1. An ELISA assay was employed to quantify the concentrations of TNFα, IL-1β, IL-6, GM-CSF, and eotaxin. Additionally, flow cytometry and western blotting techniques were utilized to evaluate cellular apoptosis, whereas immunofluorescence staining was applied to detect the expression levels of ZO-1. Our findings indicated that IL-13 stimulation resulted in an elevated expression of ER stress proteins and LPCAT1 in nasal mucosal epithelial cells. Furthermore, LPCAT1 interference diminished the expression of inflammatory mediators, apoptosis markers, barrier disruption indicators, and ER stress proteins in IL-13-stimulated nasal mucosal epithelial cells. Further, by inhibiting ER stress, LPCAT1 interference diminished the expression of inflammatory factors, apoptosis, and barrier damage in nasal mucosal epithelial cells stimulated by IL-13. Concisely, LPCAT1 ameliorates AR-induced inflammation, apoptosis, and barrier impairment in nasal mucosal epithelial cells by modulating ER stress, implying its potential as a novel therapeutic target for AR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2024.102712DOI Listing

Publication Analysis

Top Keywords

nasal mucosal
20
mucosal epithelial
20
epithelial cells
20
endoplasmic reticulum
16
apoptosis barrier
12
lpcat1
11
barrier damage
8
damage nasal
8
allergic rhinitis
8
reticulum stress
8

Similar Publications

Indoor Environment and Health Effects: Protocol of an Exploratory Panel Study among Young Adults in China (China IEHE Study).

Environ Health (Wash)

January 2025

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.

Indoor environment and health have drawn public attention worldwide. However, the joint health effects and mechanisms of exposure to different types of indoor environmental factors remain unclear. We established an exploratory panel study on indoor environment and health effects among young adults in China (the China IEHE Study) to comprehensively investigate 3M issues, including multiple indoor environmental factors, multiple health effects, and multiple omics methods for mechanism exploration.

View Article and Find Full Text PDF

LPCAT1 reduces inflammatory response, apoptosis and barrier damage of nasal mucosal epithelial cells caused by allergic rhinitis through endoplasmic reticulum stress.

Tissue Cell

December 2024

Department of Facial Features, 970 Hospital, Joint Service Support Force of the Chinese People's Liberation Army, Yantai, Shandong, China. Electronic address:

Allergic rhinitis (AR), common in children and adolescents, involves Lysophosphatidylcholine acyltransferase 1 (LPCAT1) catalyzing surfactant lipid biosynthesis and suppressing endoplasmic reticulum expression. However, the precise mechanism underlying the impact of LPCAT1 on epithelial cell damage in AR remains elusive. Hence, the present investigation elucidated the potential effect of LPCAT1 on epithelial cell damage in AR by inhibiting endoplasmic reticulum stress.

View Article and Find Full Text PDF

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Rapid advances in vaccine technology are becoming increasingly important in tackling global health crises caused by respiratory virus infections. While traditional vaccines, primarily administered by intramuscular injection, have proven effective, they often fail to provide the broad upper respiratory tract mucosal immunity, which is urgently needed for first-line control of respiratory viral infections. Furthermore, traditional intramuscular vaccines may not adequately address the immune escape of emerging virus variants.

View Article and Find Full Text PDF

House dust mite induced mucosal barrier dysfunction and type 2 inflammatory responses via the MAPK/AP-1/IL-24 Signaling pathway in allergic rhinitis.

Int Immunopharmacol

January 2025

Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China. Electronic address:

The epithelial barrier, previously regarded only as a physical defense, is now understood to play a vital role in immune responses and the regulation of inflammation. Allergic rhinitis (AR) is a prevalent chronic inflammatory condition of the nasal mucosa, with House Dust Mite (HDM) identified as a significant inhalant allergen that can impair this barrier. IL-24 has emerged as a key cytokine in allergic diseases, involved in maintaining epithelial cell homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!