Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. Many fundamental properties of motile active matter are by now reasonably well understood and under control. Thus, the ground is now prepared for the study of physical aspects and mechanisms of motion in complex environments, the behavior of systems with new physical features like chirality, the development of novel micromachines and microbots, the emergent collective behavior and swarming of intelligent self-propelled particles, and particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2025 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836640 | PMC |
http://dx.doi.org/10.1088/1361-648X/adac98 | DOI Listing |
Proton insertion mechanism with fast reaction kinetics is attracting more and more attention for high-rate and durable aqueous Zn─MnO batteries. However, hydrated Zn insertion reaction accompanied with Jahn-Teller effect and Mn disproportionation generally leads to sluggish rate capability and irreversible structure transformation. Here, carboxyl-carbon nanotubes supported α-MnO nanoarrays (C─MnO) cathode is successfully fabricated by a convent grinding process for high-performance Zn batteries.
View Article and Find Full Text PDFFront Microbiol
February 2025
Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.
Soil microorganisms are relatively poorly studied in urban ecosystems, particularly within unmanaged woodlands that form island-like patches of vegetation. We surveyed soil bacteria on spp. dominated riparian-like forest patches in Kraków, the second largest city in Poland, to find out which environmental factors influence their activities and functional diversity, measured using Biolog ECO plates.
View Article and Find Full Text PDFBiogeochemistry
March 2025
Institute of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ USA.
Unlabelled: Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses.
View Article and Find Full Text PDFNutrients
February 2025
One Health Research Group, Universidad de las Américas, Quito 17024, Ecuador.
To our knowledge, no previous study has analyzed the associations between self-efficacy and adherence to the Mediterranean diet (MedDiet) in adolescents, nor have sex-based differences in this relationship been examined. The aim of the current study was to examine the relationship between self-efficacy and MedDiet adherence in Spanish adolescents. This research was cross-sectional and involved 619 adolescents (56.
View Article and Find Full Text PDFFoods
March 2025
Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, ul. Chełmońskiego 37, 51-630 Wrocław, Poland.
This study aimed to evaluate the feasibility of producing and characterizing L. powders obtained through spray drying and freeze drying using maltodextrin and inulin as carriers. Quantitative and qualitative analysis of polyphenols by high-performance liquid chromatography with diode-array detection (HPLC-DAD) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) identified key bioactive compounds, including punicalagin isomers and their galloyl esters, as well as flavonoids (myricetin-3-galactoside, myricetin-3-rhamnoside, quercetin-3-galactoside, and tiliroside).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!