Tuning multi-scale pore structures in carbonaceous films via direct ink writing and sacrificial templates for efficient indoor formaldehyde removal.

J Hazard Mater

Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China. Electronic address:

Published: January 2025

The primary challenges impeding the extensive application of adsorption for indoor air purification have been low efficiency and effective capacity. To fill the research gap, we developed carbonaceous net-like adsorption films featuring multi-scale porous structures for efficient indoor formaldehyde removal. By optimizing the interfacial mass transfer and internal diffusion, we designed macro- to mesoscale meshes on the film surface and micro- to nano-scale pores within the materials, which were achieved by direct-ink-writing (DIW) printing and sacrificial template methods, respectively. Compared to unmodified planar films, the developed films exhibited a significant increase in the initial single-pass efficiency of formaldehyde from 68.1 % to 89.0 %, with the 8-hour effective adsorption capacity (EAC) spiking from 2.74 mg/g to 8.60 mg/g. Through thermal regeneration, the film demonstrated stable operation for 30 days through a long-term experiment over 250 hours, and EAC significantly increased to 241.7 mg/g. The multi-scale adsorption films achieved nearly the highest purification rates and capacities among existing physisorption and chemisorption technologies, with the lowest energy cost of 0.37 kW·h per day. The innovative design and fabrication of multi-scale adsorption films evidence its substantial application for indoor formaldehyde purification and provide a viable solution for carbon capture and gas separation in environmental engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137203DOI Listing

Publication Analysis

Top Keywords

indoor formaldehyde
12
adsorption films
12
efficient indoor
8
formaldehyde removal
8
multi-scale adsorption
8
films
6
adsorption
5
tuning multi-scale
4
multi-scale pore
4
pore structures
4

Similar Publications

Tuning multi-scale pore structures in carbonaceous films via direct ink writing and sacrificial templates for efficient indoor formaldehyde removal.

J Hazard Mater

January 2025

Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China. Electronic address:

The primary challenges impeding the extensive application of adsorption for indoor air purification have been low efficiency and effective capacity. To fill the research gap, we developed carbonaceous net-like adsorption films featuring multi-scale porous structures for efficient indoor formaldehyde removal. By optimizing the interfacial mass transfer and internal diffusion, we designed macro- to mesoscale meshes on the film surface and micro- to nano-scale pores within the materials, which were achieved by direct-ink-writing (DIW) printing and sacrificial template methods, respectively.

View Article and Find Full Text PDF

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

This study describes the process of developing a high-impact, low-cost, and low-maintenance air ventilation system for anatomy facilities. It employed the strategic application of Value Engineering (VE), assuring that the air ventilation system meets contemporary threshold limit values (TLVs) for formaldehyde in the working zone of dissection tables. A creative-innovative construction methodology was used, combining the Theory of Inventive Problem Solving (TRIZ/TIPS) and VE for an anatomy laboratory air ventilation concept.

View Article and Find Full Text PDF

Formaldehyde (FA) is a ubiquitous indoor air pollutant emitted from construction, consumer, and combustion-related products, and ozone-initiated reactions with reactive organic volatiles. The derivation of an indoor air quality guideline for FA by World Health Organization in 2010 did not find convincing evidence for bronchoconstriction-related reactions as detrimental lung function. Causal relationship between FA and asthma has since been advocated in meta-analyses of selected observational studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!