It is still challenging to perform a high-throughput digestion on limited amounts of sample prior to elemental analysis by atomic spectrometry. Herein, a photochemical reactor consisting of a quartz tube inserted into a low-pressure mercury lamp was used to fabricate a flow droplet photodigestion (FD-PD) device for the high-throughput digestion of small amounts of samples. A mixture containing 20 μL of blood sample, 20 μL of HO, and 10 μL of HNO was pumped and passed through the reactor before its online analysis by hydride generation atomic fluorescence spectrometry (HG-AFS). The developed photochemical reactor provides significantly higher oxidation capability than conventional ultraviolet (UV) photochemical reactor since the vacuum UV irradiation below 200 nm from the mercury lamp directly irradiates samples with high transmittance, enabling complete digestion within 2 min. Compared to conventional digestion methods, the proposed method retains several unique advantages of higher sample throughput (57 pcs h), lower sample, mineral acid, and oxidant consumption, and shorter digestion time, facilitating painless blood analysis for children. Limits of detection (LODs) of 0.25 and 0.15 μg L were obtained for As and Hg, respectively, with precisions (relative standard deviations (RSDs), = 11, 2.0 μg L) better than 4%. The practicality of FD-PD-HG-AFS was confirmed by detecting As and Hg in one blood and two urine certified reference materials (CRMs), as well as several children's blood samples with satisfactory recoveries (93%-109%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c05740 | DOI Listing |
Org Process Res Dev
January 2025
School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
We report the development and optimization of a scalable flow process for metallaphotoredox (Ir/Ni) C-O coupling, a mild and efficient approach for forming alkyl-aryl ethers, a common motif in medicinal and process chemistry settings. Time-resolved infrared spectroscopy (TRIR) highlighted the amine as the major quencher of the photocatalyst triplet excited state, along with the formation of an Ir(II) species that, in the presence of the Ni cocatalyst, has its lifetime shortened, suggesting reductive quenching of Ir(III)*, followed by reoxidation facilitated by the Ni cocatalyst. TRIR and batch reaction screening was used to develop conditions transferrable to flow, and many processing benefits of performing the reaction in flow were then demonstrated using a simple to construct/operate, small-footprint FEP coil flow reactor, including short (<10 min) space times and reduced catalyst loadings (down to 0.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China.
It is still challenging to perform a high-throughput digestion on limited amounts of sample prior to elemental analysis by atomic spectrometry. Herein, a photochemical reactor consisting of a quartz tube inserted into a low-pressure mercury lamp was used to fabricate a flow droplet photodigestion (FD-PD) device for the high-throughput digestion of small amounts of samples. A mixture containing 20 μL of blood sample, 20 μL of HO, and 10 μL of HNO was pumped and passed through the reactor before its online analysis by hydride generation atomic fluorescence spectrometry (HG-AFS).
View Article and Find Full Text PDFReact Chem Eng
January 2025
Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
Light interacts with gas bubbles in various ways, potentially leading to photon losses in gas-liquid photochemical applications. Given that light is a valuable 'reagent', understanding these losses is crucial for optimizing reactor efficiency. In this study, we address the challenge of quantifying these interactions by implementing a method that separately determines the photon flux and utilizes actinometric experiments to determine the effective optical path length, a key descriptor of photon absorption.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.
Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.
Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!