SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development.

PLoS Genet

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.

Published: January 2025

Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1011361DOI Listing

Publication Analysis

Top Keywords

elegans postembryonic
8
postembryonic mesoderm
8
transcription factors
8
highly conserved
8
sem-2 essential
8
transcription factor
8
patterning lineage
8
relationship soxc
8
sem-2
7
development
5

Similar Publications

SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development.

PLoS Genet

January 2025

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.

Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C.

View Article and Find Full Text PDF

The BEN domain protein LIN-14 coordinates neuromuscular positioning during epidermal maturation.

iScience

January 2025

Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Development and function of an organism depend on coordinated inter-tissue interaction. How such interactions are maintained during tissue renewal and reorganization remains poorly understood. Here, we find that BEN domain transcription factor LIN-14 is required in epidermis for maintaining the position of motor neurons and muscles during developmental tissue reorganization.

View Article and Find Full Text PDF

Early-life experience influences subsequent maturation and function of the adult brain, sometimes even in a sex-specific manner, but underlying molecular mechanisms are poorly understood. We describe here how juvenile experience defines sexually dimorphic synaptic connectivity in the adult nervous system. Starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB.

View Article and Find Full Text PDF

Impact of photobleaching on quantitative, spatio-temporal, super-resolution imaging of mitochondria in live larvae.

Npj Imaging

November 2024

Research Department of Cell and Developmental Biology, Division of Biosciences, The Centre for Cell and Molecular Dynamics, University College London, London, UK.

Super-resolution (SR) 3D rendering allows superior quantitative analysis of intracellular structures but has largely been limited to fixed or ex vivo samples. Here we developed a method to perform SR live imaging of mitochondria during post-embryonic development of . larvae.

View Article and Find Full Text PDF

Postembryonic development of animals has long been considered an internally predetermined program, while macronutrients were believed to be essential solely for providing biomatters and energy to support this process. However, in this study, by using a nematode Caenorhabditis elegans (abbreviated as C. elegans hereafter) model, we surprisingly discovered that dietary supplementation of palmitic acid alone, rather than other abundant essential nutrients such as glucose or amino acid mixture, was sufficient to initiate early postembryonic development even under complete macronutrient deprivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!