Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear. Pyruvate carboxylase (PC) is a catalytic enzyme located within the mitochondria that is intricately linked with mitochondrial damage and metabolism. In the present study, the downregulation of PC in various fibrotic animal and human kidney samples is demonstrated. Renal proximal tubule-specific Pcx gene knockout mice (Pcx) has significant interstitial fibrosis compared to control mice, with heightened expression of extracellular matrix molecules. This is further demonstrated in a stable PC knock-out RTEC line. Mechanistically, PC deficiency reduces its interaction with sulfide:quinone oxidoreductase (SQOR), increasing the ubiquitination and degradation of SQOR. This leads to mitochondrial morphological and functional disruption, increased mtDNA release, activation of the cGAS-STING pathway, and elevated glycolysis levels, and ultimately, promotes renal fibrosis. This study investigates the molecular mechanisms through which PC deficiency induces mitochondrial injury and metabolic reprogramming in RTECs. This study provides a novel theoretical foundation and potential therapeutic targets for the pathogenesis and treatment of renal fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202408753DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
20
pyruvate carboxylase
8
tubular epithelial
8
renal
8
promotes renal
8
mitochondrial injury
8
fibrosis
6
deletion pyruvate
4
carboxylase tubular
4
epithelial cell
4

Similar Publications

Background: Traditional 2-dimensional (2D) ultrasound is a noninvasive method in the assessment of glomerular disease. Ultrasound elastography shows promise in evaluating renal fibrosis, which plays a key role in glomerular disease progression. However, research in pediatric cohorts is limited.

View Article and Find Full Text PDF

Objective: This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy.

Methods: A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation.

View Article and Find Full Text PDF

Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

The role of macrophages remains incompletely understood in kidney injury and repair. Their plasticity offers an opportunity to polarize them towards mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney macrophages augmented their AIF-1 expression after injury.

View Article and Find Full Text PDF

Aims: Aurora kinase A (AURKA) has been implicated in promoting myeloid and renal fibrosis. This study aimed to investigate the impact and underlying mechanism of AURKA on liver fibrosis and to assess the therapeutic potential of MLN8237, a small-molecule AURKA inhibitor, in preventing liver fibrosis in mice.

Methods: The research used bioinformatics analysis and immunohistochemistry staining on fibrotic liver tissues from human and mouse models to assess AURKA expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!