Manipulating Fano Coupling in an Opto-Thermoelectric Field.

Adv Sci (Weinh)

Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Published: January 2025

Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging. Herein, an all-optical "pick-and-place" approach aimed at assembling Fano metamolecules of various geometries and compositions in a reconfigurable manner is proposed. Their coupling behavior by in situ dark-field scattering spectroscopy is studied. Driven by a light-directed opto-thermoelectric field, silicon nanoparticles with high-quality-factor Mie resonances (discrete states) and low-loss BaTiO nanoparticles (continuum states) are assembled into all-dielectric heterodimers, where distinct Fano resonances are observed. The Fano parameter can be adjusted by changing the resonant frequency of the discrete states or the light polarization. Tunable coupling strength and multiple Fano resonances by altering the number of continuum states and discrete states in dielectric heterooligomers are also shown. This work offers a general design rule for Fano resonance and an all-optical platform for controlling Fano coupling on demand.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202412454DOI Listing

Publication Analysis

Top Keywords

fano resonances
12
discrete states
12
fano coupling
8
opto-thermoelectric field
8
fano
8
fano resonance
8
continuum states
8
coupling
5
states
5
manipulating fano
4

Similar Publications

Manipulating Fano Coupling in an Opto-Thermoelectric Field.

Adv Sci (Weinh)

January 2025

Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging.

View Article and Find Full Text PDF

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.

View Article and Find Full Text PDF

Fano Resonance in Epsilon-Near-Zero Media.

Phys Rev Lett

December 2024

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!