Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection. Here, we test whether such transcriptional patterns occur in Egyptian fruit bat tissues through single-cell and spatial transcriptomics of gut, lung and blood cells, comparing gene expression between bat, mouse and human. Despite numerous recent loss and expansion events of interferons in the bat genome, interferon expression and induction are remarkably similar to that of mouse. In contrast, central complement system genes are highly and uniquely expressed in key regions in bat lung and gut epithelium, unlike in human and mouse. Interestingly, the unique expression of these genes in the bat gut is strongest in the crypt, where developmental expression programs are highly conserved. The complement system genes also evolve rapidly in their coding sequence across the bat lineage. Finally, the bat complement system displays strong hemolytic activity. Together, these results indicate a distinctive transcriptional divergence of the complement system, which may be linked to bat resistance, and highlight the intricate evolutionary landscape of bat immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msaf017DOI Listing

Publication Analysis

Top Keywords

complement system
16
bat
11
single-cell spatial
8
spatial transcriptomics
8
bat immunity
8
increased resistance
8
egyptian fruit
8
fruit bat
8
system genes
8
expression
5

Similar Publications

Single-cell and spatial transcriptomics illuminate bat immunity and barrier tissue evolution.

Mol Biol Evol

January 2025

Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.

View Article and Find Full Text PDF

Introduction: Cesarean deliveries account for approximately one-third of all births in Germany, prompting ongoing discussions on cesarean section rates and their connection to medical staffing and birth volume. In Germany, the majority of departments integrate obstetric and gynecological care within a single department.

Methods: The analysis utilized quality reports from German hospitals spanning 2015 to 2019.

View Article and Find Full Text PDF

The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E.

View Article and Find Full Text PDF

Previous preclinical and translational studies suggest that tissue trauma related to bony fracture and intervertebral disk disruption initiates the formation of pronociceptive antibodies that support chronic musculoskeletal pain conditions. This study tested this hypothesis in the monosodium iodoacetate (MIA) mouse model of osteoarthritis (OA) and extended the findings using OA patient samples. Monosodium iodoacetate was injected unilaterally into the knees of male and female wild-type (WT) and muMT mice (lacking B cells) to induce articular cartilage damage.

View Article and Find Full Text PDF

Introduction: Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis.

Methods: PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!