Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups. (2) In the ecosystem, the human perspective does not always determine the spread of viruses. Once the ecological balance between predators and prey is disrupted, there may be scenarios where predator populations die out, prey populations overpopulate, or both predators and prey go extinct. In such cases, the spread of the virus has little impact, and the system cannot restore itself to a new equilibrium state. In this case, even if humans intervene, it is difficult to change the fate of species extinction. (3) In situations where predator and prey populations maintain a stable state, human attitudes and actions are particularly critical. Human intervention can directly affect the transmission rate of the virus and the recovery rate of hosts, thereby rapidly reducing the infection rate and mitigating the harm caused by the virus. If humans do not intervene, predators may remain infected for a long time, thereby posing a serious threat to the ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0247884DOI Listing

Publication Analysis

Top Keywords

virus transmission
12
human intervention
8
ecosystem virus
8
human perspective
8
transmission rate
8
predators prey
8
prey populations
8
humans intervene
8
virus
6
ecosystem
5

Similar Publications

Safety and immunogenicity of an mRNA-1273 vaccine booster in adolescents.

Hum Vaccin Immunother

December 2025

Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA.

Safety, immunogenicity, and effectiveness of an mRNA-1273 50-μg booster were evaluated in adolescents (12-17 years), with and without pre-booster SARS-CoV-2 infection. Participants who had received the 2-dose mRNA-1273 100-µg primary series in the TeenCOVE trial (NCT04649151) were offered the mRNA-1273 50-μg booster. Primary objectives included safety and inference of effectiveness by establishing noninferiority of neutralizing antibody (nAb) responses after the booster compared with the nAb post-primary series of mRNA-1273 among young adults in COVE (NCT04470427).

View Article and Find Full Text PDF

Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups.

View Article and Find Full Text PDF

West Nile virus (WNV) infection is emerging as a disease of public health concern in Kerala, India with recurring outbreaks since 2011. With its tropical climate, biodiversity hot spots of Western ghats, forest cover, plenty of water bodies and bird sanctuaries, Kerala provides an ideal ecological niche for vector breeding and transmission of WNV. In this article, we reflect on the peculiar features of the outbreaks of WNV fever in Kerala and highlight the knowledge gaps, the research priorities and the need for effective control measures.

View Article and Find Full Text PDF

Bat Viral Shedding: A Review of Seasonal Patterns and Risk Factors.

Vector Borne Zoonotic Dis

January 2025

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Bats act as reservoirs for a variety of zoonotic viruses, sometimes leading to spillover into humans and potential risks of global transmission. Viral shedding from bats is an essential prerequisite to bat-to-human viral transmission and understanding the timing and intensity of viral shedding from bats is critical to mitigate spillover risks. However, there are limited investigations on bats' seasonal viral shedding patterns and their related risk factors.

View Article and Find Full Text PDF

Extracellular vesicles in ZIKV infection: Carriers and facilitators of viral pathogenesis?

Sci Prog

January 2025

Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá, Colombia.

Zika virus (ZIKV) is a flavivirus of significant epidemiological importance, utilizing various transmission strategies and infecting "immune privileged tissues" during both the pre- and postnatal periods. One such transmission method may involve extracellular vesicles (EVs). EVs can travel long distances without degrading, carrying complex messages that trigger different responses in recipient cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!