Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R). We evaluated relevant genes and proteins by real-time fluorescent quantitative PCR and Western blot analysis. To evaluate myocardial tissue damage and cell injury, we employed cell counting kit-8 assays, flow cytometry, hematoxylin-eosin staining, and 2,3,5-triphenyltetrazolium chloride staining techniques. Our results show that administering MEL notably reduces the concentrations of cTnT, CK-MB, and lactate dehydrogenase in the serum of MIRI rats, mitigates the extent of myocardial infarction, improves the recovery of pathological conditions in myocardial tissues, and reduces the concentrations of Fe, malondialdehyde (MDA), and reactive oxygen species (ROS) in the myocardial tissue, while also promoting increased glutathione levels. Moreover, MEL can also restore the reduced viability of H9C2 cells caused by H/R or ferroptosis inducers (RSL3), reduce the cellular content of Fe, MDA, and ROS, and inhibit ferroptosis. Mechanistically, MEL promotes the expression of GPX4 by downregulating the expression of ATF3, thereby inhibiting ferroptosis in cardiomyocytes and ultimately alleviating the process of MIRI. Our study demonstrates that MEL ameliorates MIRI by inhibiting ferroptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-024-00995-z | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Critical Care Medicine, The Qujing NO.1 People's Hospital, Qujing, 655000, Yunnan, China.
Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).
View Article and Find Full Text PDFACS Nano
January 2025
Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
[This corrects the article DOI: 10.3389/fphar.2018.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China. Electronic address:
Objectives: Pathological remodeling after myocardial infarction (MI) confers the development of heart failure. Our prior research has indicated that splenic nerve neuromodulation mitigates myocardial ischemia-reperfusion injury (IRI) by reducing levels of proinflammatory factors. This study aims to explore the potential therapeutic benefits of splenic nerve neuromodulation in MI and the underlying mechanism.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China.
Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!