Early root traits, particularly total root length, are heritable and show positive genetic correlations with biomass yield in perennial ryegrass; incorporating them into breeding programs can enhance genetic gain. Perennial ryegrass (Lolium perenne L.) is an important forage grass widely used in pastures and lawns, valued for its high nutritive value and environmental benefits. Despite its importance, genetic improvements in biomass yield have been slow, mainly due to its outbreeding nature and the challenges of improving multiple traits simultaneously. This study aims to assess the potential advantages of including early root traits in the perennial ryegrass breeding process. Root traits, including total root length (TRL) and root angle (RA) were phenotyped in a greenhouse using rhizoboxes, and genetic correlations with field yield were estimated across three European locations over two years. Bivariate models estimated significant genetic correlations of 0.40 (SE = 0.14) between TRL and field yield, and a weak but positive correlation to RA of 0.15 (SE = 0.14). Heritability estimates were 0.36 for TRL, 0.39 for RA, and 0.31 for field yield across locations. Incorporating root trait data into selection criteria can improve the efficiency of breeding programs, potentially increasing genetic gain by approximately 10%. This results highlight the potential of early root traits to refine selection criteria in perennial ryegrass breeding programs, contributing to higher yield and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-024-04797-5DOI Listing

Publication Analysis

Top Keywords

perennial ryegrass
20
early root
16
breeding programs
16
root traits
16
biomass yield
12
genetic correlations
12
field yield
12
yield perennial
8
ryegrass lolium
8
lolium perenne
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!