CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Published: January 2025

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

Methods: Rats were separated into CIH and Normoxia groups, and H9c2 cells were divided into Control and CIH + 8 h groups. Rat body weight (BW) was markedly gained from two to six weeks. Furthermore, CIH decreased cardiac dysfunction, damaged cellular structure, induced myocardial fibrosis, and promoted cardiomyocyte apoptosis by HE, masson, sirius-red, and TUNEL staining. Western blot, immunohistochemical, immunofluorescence, double immunofluorescence staining were performed to investigate CaMKIIγ, Bcl-2, Bax, Caspase 3, HIF-1 protein expression.

Results: Heart weight (HW) and HW/BW ratio in CIH group was markedly gained compared with the Normoxia group. CaMKIIγ expression was notably increased after CIH, and mainly expressed in the cytoplasm in vivo and vitro. The results of HIF-1 expression have the same trend of CaMKIIγ expression and cardiomyocyte apoptosis. In addition, the co-localizations of CaMKIIγ with Caspase 3, and CaMKIIγ with HIF-1 were observed by double immunofluorescence staining.

Conclusions: These results indicated increased CaMKIIγ expression advances CIH-induced cardiomyocyte apoptosis via HIF-1 signaling pathway, which afford a new insight and provide a potential therapy for OSA patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11325-024-03225-8DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte apoptosis
24
camkiiγ expression
16
signaling pathway
12
camkiiγ
8
chronic intermittent
8
apoptosis hif-1
8
hif-1 signaling
8
cardiac dysfunction
8
markedly gained
8
double immunofluorescence
8

Similar Publications

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects.

View Article and Find Full Text PDF

Programmed cardiomyocyte death in myocardial infarction.

Apoptosis

January 2025

National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.

Cardiovascular disease (CVD) is a leading cause of human mortality worldwide, with patients often at high risk of heart failure (HF) in myocardial infarction (MI), a common form of CVD that results in cardiomyocyte death and myocardial necrosis due to inadequate myocardial perfusion. As terminally differentiated cells, cardiomyocytes possess a severely limited capacity for regeneration, and an excess of dead cardiomyocytes will further stress surviving cells, potentially exacerbating to more extensive heart disease. The article focuses on the relationship between programmed cell death (PCD) of cardiomyocytes, including different forms of apoptosis, necrosis, and autophagy, and MI, as well as the potential application of these mechanisms in the treatment of MI.

View Article and Find Full Text PDF

Downregulation of CCR2 reduces ventricular remodeling after myocardial infarction by splenic nerve neuromodulation in acute and chronic rat models.

Int Immunopharmacol

January 2025

Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China. Electronic address:

Objectives: Pathological remodeling after myocardial infarction (MI) confers the development of heart failure. Our prior research has indicated that splenic nerve neuromodulation mitigates myocardial ischemia-reperfusion injury (IRI) by reducing levels of proinflammatory factors. This study aims to explore the potential therapeutic benefits of splenic nerve neuromodulation in MI and the underlying mechanism.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!