Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress. Our findings indicate that blueberries primarily adapt to salt stress by modulating pathways associated with carbohydrate metabolism, organic acid metabolism, amino acid metabolism, and various organic compounds. Key metabolites involved in this response include sucrose, propionic acid, and palmitic acid. A total of 241 transcription factors were differentially expressed, with significant involvement from families such as AP2, Dof, GATA, WRKY, and TCP. Notably, the galactose metabolism pathway was associated with 5 DAMs and 24 DEGs, while the starch and sucrose metabolism pathway contained 5 DAMs and 23 DEGs, highlighting their crucial roles in mitigating salt stress. Overexpression of VcGolS3 in transgenic Arabidopsis conferred tolerance to salt and drought stresses, primarily evidenced by a significant increase in GolS enzyme activity and reduced ROS accumulation. This study provides valuable insights into the molecular mechanisms underlying the blueberry response to salt stress and lays the groundwork for breeding salt- and drought-tolerant blueberry varieties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-025-01557-xDOI Listing

Publication Analysis

Top Keywords

salt stress
24
metabolism organic
8
acid metabolism
8
metabolism pathway
8
dams degs
8
salt
7
stress
6
metabolism
5
correlation analysis
4
analysis transcriptome
4

Similar Publications

Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.

View Article and Find Full Text PDF

Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.

View Article and Find Full Text PDF

Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.

View Article and Find Full Text PDF

Ultrahigh nickel cathode materials are widely utilized due to their outstanding energy and power densities. However, the presence of cobalt can cause significant lattice distortion during charge and discharge cycles, leading to the loss of active lithium, the formation of lattice cracks, and the emergence of a rock salt phase that hinders lithium-ion transport. Herein, we developed a novel cobalt-free, aluminum-doped cathode material, LiNiMnAlO (NMA), which effectively delays the harmful H2-H3 phase transition, reduces lattice distortion, alleviates stress release, and significantly enhances structural stability.

View Article and Find Full Text PDF

The increasing trend of salinization of agricultural lands represents a great threat to the growth of major crops. Hence, shedding light on the salt-tolerance capabilities of three environment-resilient medicinal species from the Apiaceae, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!