Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis. This review explores the structure and biological functions of CDK5, highlighting its regulatory roles in disease development through the phosphorylation of diverse substrate proteins. Additionally, we examine the therapeutic potential of CDK5 inhibition, offering novel perspectives for disease diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-025-10253-4 | DOI Listing |
Mol Biol Rep
January 2025
Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.
Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.
We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
Center for Drug Research, Ludwig-Maximilians-University Munich, Germany.
MST2 (STK3) is a major upstream kinase in the Hippo signalling pathway, an evolutionary conserved pathway in regulation of organ size, self-renewal and tissue homeostasis. Its downstream effectors are the transcriptional regulators YAP and TAZ. This pathway is regulated by a variety of factors, such as substrate stiffness or cell-cell contacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!