The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle. GaHCF NACs function as highly efficient iron chelators with robust antiferroptosis properties. Through in situ capture of iron within atherosclerotic plaques, these catalysts enhance reactive oxygen species scavenging, initiating an amplified therapeutic response. GaHCF NACs significantly advance plaque regression, stabilization, and vascular functional recovery by inhibiting MAPK13 (p38-δ MAPK) signaling, a key mediator of inflammation and cell death. Importantly, the in situ iron capture process generates a detectable photoacoustic signal, offering a notable diagnostic advantage that allows real-time monitoring of plague status. This multifunctional nanocatalytic platform in situ transforms toxic iron within atherosclerotic plaques into both a therapeutic and diagnostic agent, adapting dynamically to the microenvironment and representing a promising strategy for reducing plaque vulnerability and preventing rupture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c15068 | DOI Listing |
Biomech Model Mechanobiol
January 2025
Cardiac Surgery Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Percutaneous coronary interventions in highly calcified atherosclerotic lesions are challenging due to the high mechanical stiffness that significantly restricts stent expansion. Intravascular lithotripsy (IVL) is a novel vessel preparation technique with the potential to improve interventional outcomes by inducing microscopic and macroscopic cracks to enhance stent expansion. However, the exact mechanism of action for IVL is poorly understood, and it remains unclear whether the improvement in-stent expansion is caused by either the macro-cracks allowing the vessel to open or the micro-cracks altering the bulk material properties.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.
The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.
View Article and Find Full Text PDFClin Transl Med
January 2025
Vascular Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.
Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.
J Ultrasound Med
January 2025
Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China.
Objectives: This study analyzed carotid artery remodeling characteristics in early carotid atherosclerosis (ECAS).
Methods: The 1021 participants were evaluated using ultrasonography and categorized into three groups: Group A, 391 participants with increased intima-media thickness (IMT); Group B, 300 participants with atherosclerotic plaque only on the carotid bulb (CB); and the control group (330 participants). The ratios of the diameters in the CB to those in the common carotid artery (D) and internal carotid artery (D) were defined as carotid index1 (CI) and 2 (CI).
Int J Stroke
January 2025
Stroke Unit, Careggi University Hospital, Florence, Italy.
Introduction: Recent evidence suggests a possible role of non-stenotic carotid atherosclerotic plaques in the aetiology of embolic stroke of undetermined source (ESUS).
Methods: We conducted a systematic review and meta-analysis of prevalence and characteristics of non-stenotic carotid plaques (NSP) with high-risk features (complicated NSP) in internal carotid artery in unilateral ESUS in the anterior circulation. We searched Medline and Ovid-Embase databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!